On the spectrum of sums of generators in a finite group
Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 461-463.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be any finite extension field of the field of rationals, and let $n$ and $\alpha_1,\dots,\alpha_n$ be given natural numbers. It is shown that there are only finitely many isomorphism classes of finite groups $G$ on $n$ generators $a_1,\dots,a_n$ such that the spectrum of the element $\sum\limits_{i=1}^n\alpha_ia_i$ of the algebra $\mathbf CG$ lies in $K$.
@article{IM2_1991_37_2_a9,
     author = {S. P. Strunkov},
     title = {On the spectrum of sums of generators in a finite group},
     journal = {Izvestiya. Mathematics },
     pages = {461--463},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a9/}
}
TY  - JOUR
AU  - S. P. Strunkov
TI  - On the spectrum of sums of generators in a finite group
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 461
EP  - 463
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a9/
LA  - en
ID  - IM2_1991_37_2_a9
ER  - 
%0 Journal Article
%A S. P. Strunkov
%T On the spectrum of sums of generators in a finite group
%J Izvestiya. Mathematics 
%D 1991
%P 461-463
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a9/
%G en
%F IM2_1991_37_2_a9
S. P. Strunkov. On the spectrum of sums of generators in a finite group. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 461-463. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a9/

[1] Kostrikin A. I., “O probleme Bernsaida”, Izv. AN SSSR. Ser. matem., 23:1 (1959), 3–34 | MR

[2] Kostrikin A. I., Vokrug Bernsaida, Nauka, M., 1988 | MR | Zbl

[3] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR