New restrictions on the topology of real curves of degree a multiple of~8
Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 421-443
Voir la notice de l'article provenant de la source Math-Net.Ru
Two geometrical constructions are given which enable one to rule out certain arrangements of ovals of real plane curves of degree a multiple of 8. In particular, for degree 8 one cannot have an $M$-curve for which one oval envelopes the other ovals.
@article{IM2_1991_37_2_a7,
author = {E. I. Shustin},
title = {New restrictions on the topology of real curves of degree a multiple of~8},
journal = {Izvestiya. Mathematics },
pages = {421--443},
publisher = {mathdoc},
volume = {37},
number = {2},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a7/}
}
E. I. Shustin. New restrictions on the topology of real curves of degree a multiple of~8. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 421-443. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a7/