New restrictions on the topology of real curves of degree a multiple of~8
Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 421-443.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two geometrical constructions are given which enable one to rule out certain arrangements of ovals of real plane curves of degree a multiple of 8. In particular, for degree 8 one cannot have an $M$-curve for which one oval envelopes the other ovals.
@article{IM2_1991_37_2_a7,
     author = {E. I. Shustin},
     title = {New restrictions on the topology of real curves of degree a multiple of~8},
     journal = {Izvestiya. Mathematics },
     pages = {421--443},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a7/}
}
TY  - JOUR
AU  - E. I. Shustin
TI  - New restrictions on the topology of real curves of degree a multiple of~8
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 421
EP  - 443
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a7/
LA  - en
ID  - IM2_1991_37_2_a7
ER  - 
%0 Journal Article
%A E. I. Shustin
%T New restrictions on the topology of real curves of degree a multiple of~8
%J Izvestiya. Mathematics 
%D 1991
%P 421-443
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a7/
%G en
%F IM2_1991_37_2_a7
E. I. Shustin. New restrictions on the topology of real curves of degree a multiple of~8. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 421-443. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a7/

[1] Gudkov D. A., “Topologiya veschestvennykh proektivnykh algebraicheskikh mnogoobrazii”, UMN, 29:2 (1974), 3–79 | MR | Zbl

[2] Viro O. Ya., “Krivye stepeni 7, krivye stepeni 8 i gipoteza Regsdeil”, DAN SSSR, 254:6 (1980), 1306–1310 | MR | Zbl

[3] Viro O. Ya., “Uspekhi v topologii veschestvennykh algebraicheskikh mnogoobrazii za poslednie shest let”, UMN, 41:3 (1986), 45–67 | MR | Zbl

[4] Shustin E. I., “Novaya $M$-krivaya stepeni 8”, Matem. zametki, 42:2 (1987), 180–186 | MR | Zbl

[5] Korchagin A. B., Ob izotopicheskoi klassifikatsii $M$-krivykh stepeni 9 v proektivnoi ploskosti, Avtoref. dis. ... kand. fiz.-mat. nauk, LGU, L., 1988, 16 pp.

[6] Harnack A., “Über die Vielfaltigkeit der ebenen algebraischen Kurven”, Math. Ann., 10 (1876), 189–199 | DOI | MR

[7] Goryacheva T. V., Polotovskii G. M., Postroeniya $(M-1)$-krivykh $8$-go poryadka, Dep. v VINITI 24.06.85. No 441-85 Dep., Gork. gos. un-t, Gorkii, 1985, 30 pp.

[8] Polotovskii G. M., Shustin E. I., “Postroenie kontrprimerov k gipoteze Rokhlina”, UMN, 39:4 (1984), 113

[9] Shustin E. I., “Kontrprimery k gipoteze Rokhlina”, Funkts. analiz i ego prilozh., 19:2 (1985), 94–95 | MR | Zbl

[10] Rokhlin V. A., “Kompleksnye topologicheskie kharakteristiki veschestvennykh algebraicheskikh krivykh”, UMN, 33:5 (1978), 77–89 | MR | Zbl

[11] Wilson G., “Hilbert's sixteenth problem”, Topology, 17:1 (1978), 53–73 | DOI | MR | Zbl

[12] Arnold V. I., “O raspolozhenii ovalov veschestvennykh ploskikh algebraicheskikh krivykh, involyutsiyakh chetyrëkhmernykh gladkikh mnogoobrazii i arifmetike tselochislennykh kvadratichnykh form”, Funkts. analiz i ego prilozh., 5:3 (1971), 1–9 | MR

[13] Korchagin A. V., Shustin E. I., “Affinnye krivye stepeni 6 i ustraneniya nevyrozhdennoi shestikratnoi osoboi tochki”, Izv. AN SSSR. Ser. matem., 52:6 (1988), 1181–1199 | MR

[14] Fiedler T., “Eine Beschränkung für die Lage von reellen ebenen algebraischen Kurven”, Beiträge zur Algebra und Geometrie, 1981, no. 11, 7–19 | MR | Zbl

[15] Fidler T., “Puchki pryamykh i topologiya veschestvennykh algebraicheskikh krivykh”, Izv. AN SSSR. Ser. matem., 46:4 (1982), 853–863 | MR | Zbl