New restrictions on the topology of real curves of degree a multiple of~8
Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 421-443

Voir la notice de l'article provenant de la source Math-Net.Ru

Two geometrical constructions are given which enable one to rule out certain arrangements of ovals of real plane curves of degree a multiple of 8. In particular, for degree 8 one cannot have an $M$-curve for which one oval envelopes the other ovals.
@article{IM2_1991_37_2_a7,
     author = {E. I. Shustin},
     title = {New restrictions on the topology of real curves of degree a multiple of~8},
     journal = {Izvestiya. Mathematics },
     pages = {421--443},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a7/}
}
TY  - JOUR
AU  - E. I. Shustin
TI  - New restrictions on the topology of real curves of degree a multiple of~8
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 421
EP  - 443
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a7/
LA  - en
ID  - IM2_1991_37_2_a7
ER  - 
%0 Journal Article
%A E. I. Shustin
%T New restrictions on the topology of real curves of degree a multiple of~8
%J Izvestiya. Mathematics 
%D 1991
%P 421-443
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a7/
%G en
%F IM2_1991_37_2_a7
E. I. Shustin. New restrictions on the topology of real curves of degree a multiple of~8. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 421-443. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a7/