Discrete regularization of optimal control problems on ill-posed monotone variational inequalities
Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 321-335

Voir la notice de l'article provenant de la source Math-Net.Ru

The author considers the problem of minimizing an abstract functional which depends on the control and on the solution of an ill-posed variational inequality (v.i.) with a bounded monotone exact operator with the $\mu$-property (these properties are not needed for approximate operators, nor is the $\mu$-property in the pseudomonotone case). Solvability of the problem is shown. For its regularization the original v.i. is regularized by means of v.i. with a small step. A number of generalizations are indicated.
@article{IM2_1991_37_2_a3,
     author = {O. A. Liskovets},
     title = {Discrete regularization of optimal control problems on ill-posed monotone variational inequalities},
     journal = {Izvestiya. Mathematics },
     pages = {321--335},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a3/}
}
TY  - JOUR
AU  - O. A. Liskovets
TI  - Discrete regularization of optimal control problems on ill-posed monotone variational inequalities
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 321
EP  - 335
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a3/
LA  - en
ID  - IM2_1991_37_2_a3
ER  - 
%0 Journal Article
%A O. A. Liskovets
%T Discrete regularization of optimal control problems on ill-posed monotone variational inequalities
%J Izvestiya. Mathematics 
%D 1991
%P 321-335
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a3/
%G en
%F IM2_1991_37_2_a3
O. A. Liskovets. Discrete regularization of optimal control problems on ill-posed monotone variational inequalities. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 321-335. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a3/