Discrete regularization of optimal control problems on ill-posed monotone variational inequalities
Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 321-335
Voir la notice de l'article provenant de la source Math-Net.Ru
The author considers the problem of minimizing an abstract functional which depends on the control and on the solution of an ill-posed variational inequality (v.i.) with a bounded monotone exact operator with the $\mu$-property (these properties are not needed for approximate operators, nor is the $\mu$-property in the pseudomonotone case). Solvability of the problem is shown. For its regularization the original v.i. is regularized by means of v.i. with a small step. A number of generalizations are indicated.
@article{IM2_1991_37_2_a3,
author = {O. A. Liskovets},
title = {Discrete regularization of optimal control problems on ill-posed monotone variational inequalities},
journal = {Izvestiya. Mathematics },
pages = {321--335},
publisher = {mathdoc},
volume = {37},
number = {2},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a3/}
}
TY - JOUR AU - O. A. Liskovets TI - Discrete regularization of optimal control problems on ill-posed monotone variational inequalities JO - Izvestiya. Mathematics PY - 1991 SP - 321 EP - 335 VL - 37 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a3/ LA - en ID - IM2_1991_37_2_a3 ER -
O. A. Liskovets. Discrete regularization of optimal control problems on ill-posed monotone variational inequalities. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 321-335. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a3/