Foundations of a new axiomatic set theory
Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 467-473.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new axiomatic set theory, consisting of four axioms, is presented. In this theory one can prove as theorems all of the axioms of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), except for the axiom of regularity.
@article{IM2_1991_37_2_a11,
     author = {A. M. Vdovin},
     title = {Foundations of a new axiomatic set theory},
     journal = {Izvestiya. Mathematics },
     pages = {467--473},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a11/}
}
TY  - JOUR
AU  - A. M. Vdovin
TI  - Foundations of a new axiomatic set theory
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 467
EP  - 473
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a11/
LA  - en
ID  - IM2_1991_37_2_a11
ER  - 
%0 Journal Article
%A A. M. Vdovin
%T Foundations of a new axiomatic set theory
%J Izvestiya. Mathematics 
%D 1991
%P 467-473
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a11/
%G en
%F IM2_1991_37_2_a11
A. M. Vdovin. Foundations of a new axiomatic set theory. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 467-473. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a11/

[1] Gilbert D., Bernais P., Osnovaniya matematiki, t. 1, 2, Nauka, M., 1979 | MR

[2] Karri X., Osnovaniya matematicheskoi logiki, Mir, M., 1969

[3] Kolmogorov A. N., Dragalin A. G., Matematicheskaya logika. Dopolnitelnye glavy, MGU, M., 1984

[4] Koen L. Dzh., Teoriya mnozhestv i kontinuum-gipoteza, Mir, M., 1969 | MR

[5] Lindon R., Zametki po logike, Mir, M., 1968 | MR