On finitely based systems of generalized polynomials
Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 243-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of so-called generalized quasipolynomials is developed. The notions of consecution and of finitely based systems of generalized quasipolynomials, that clarify and generalize the ordinary notions of consecution and finitely based $T$-ideals, are introduced. It is shown that systems of homogeneous generalized polynomials (that is, polynomials in variables and in elements of the matrix algebra) are finitely based on this sense. Analogous results are also obtained for systems of ordinary polynomials. A connection with PI-theory is considered. As an application, the representability of a wide class of relative algebras of generalized polynomials is established.
@article{IM2_1991_37_2_a0,
     author = {A. V. Grishin},
     title = {On finitely based systems of generalized polynomials},
     journal = {Izvestiya. Mathematics },
     pages = {243--272},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a0/}
}
TY  - JOUR
AU  - A. V. Grishin
TI  - On finitely based systems of generalized polynomials
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 243
EP  - 272
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a0/
LA  - en
ID  - IM2_1991_37_2_a0
ER  - 
%0 Journal Article
%A A. V. Grishin
%T On finitely based systems of generalized polynomials
%J Izvestiya. Mathematics 
%D 1991
%P 243-272
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a0/
%G en
%F IM2_1991_37_2_a0
A. V. Grishin. On finitely based systems of generalized polynomials. Izvestiya. Mathematics , Tome 37 (1991) no. 2, pp. 243-272. http://geodesic.mathdoc.fr/item/IM2_1991_37_2_a0/

[1] Grishin A. V., “Asimptoticheskie svoistva svobodnykh konechno porozhdennykh algebr nekotorykh mnogoobrazii”, Algebra i logika, 22:6 (1983), 608–625 | MR | Zbl

[2] Grishin A. V., “Pokazatel rostka mnogoobraziya algebr i ego prilozheniya”, Algebra i logika, 28:5 (1987), 536–557 | MR

[3] Brown A., “The radical in a finitely generated $PI$-algebra”, Bull. Amer. Math. Soc., 7:2 (1982), 385–386 | DOI | MR

[4] Dzhekobson H., Teoriya kolets, IL, M., 1947

[5] Procesi C., Rings with polynomial identities, Dekker, N.Y., 1973 | MR | Zbl

[6] Littlewood D. E., “Identical relation, satisfaied in an algebra”, Proc. London Math. Soc., 32:2 (1931), 312–320 | DOI | Zbl

[7] Lewin J., “A matrix representations for associative algebras, I, II”, Trans. Amer. Math. Soc., 188:2 (1974), 293–317 | DOI | MR

[8] Razmyslov Yu. P., “Konechnaya baziruemost nekotorykh mnogoobrazii algebr”, Algebra i logika, 13:6 (1974), 685–693 | MR | Zbl

[9] Razmyslov Yu. P., “Tozhdestva so sledom polnykh matrichnykh algebr nad polem kharakteristiki nul”, Izv. AN SSSR. Ser. matem., 38:4 (1974), 723–756 | MR | Zbl

[10] Latyshev V. N., “Chastichno uporyadochennye mnozhestva i nematrichnye tozhdestva assotsiativnykh algebr”, Algebra i logika, 15:1 (1976), 53–70 | Zbl

[11] Kemer A. R., “Konechnaya baziruemost tozhdestv assotsiativnykh algebr”, Algebra i logika, 1987, no. 5, 597–641 | MR

[12] Genov G. K., “Nekotorye shpekhtovy mnogoobraziya assotsiativnykh algebr”, B'lg. mat. stud., 2, Pliska, 1981, 30–40 | MR | Zbl

[13] Popov A. P., “O shpekhtovosti nekotorykh mnogoobrazii assotsiativnykh algebr”, B'lg. mat. stud., 2, Pliska, 1981, 41–53 | Zbl

[14] Beidar K. I., “K teoremam A. I. Maltseva o matrichnykh predstavleniyakh algebr”, UMN, 41:5 (1986), 161–162 | MR | Zbl

[15] Grishin A. V., “O predstavimosti odnogo klassa svobodnykh algebr”, KhIKh Vsesoyuzn. algebr. konf., Tezisy soobschenii. Ch. 1, Lvov, 1987, 75