Geometry of invariant manifolds of a gyroscope in the field of a quadratic potential
Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 227-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

Real formulas are found (in terms of Prym $\theta$-functions) for the equation of rotation of a gyroscope in a field with an arbitrary quadratic potential. The number of components of the solutions are computed, depending on the “spectral data” of the problem.
@article{IM2_1991_37_1_a9,
     author = {A. I. Zhivkov},
     title = {Geometry of invariant manifolds of a gyroscope in the field of a quadratic potential},
     journal = {Izvestiya. Mathematics },
     pages = {227--242},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a9/}
}
TY  - JOUR
AU  - A. I. Zhivkov
TI  - Geometry of invariant manifolds of a gyroscope in the field of a quadratic potential
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 227
EP  - 242
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a9/
LA  - en
ID  - IM2_1991_37_1_a9
ER  - 
%0 Journal Article
%A A. I. Zhivkov
%T Geometry of invariant manifolds of a gyroscope in the field of a quadratic potential
%J Izvestiya. Mathematics 
%D 1991
%P 227-242
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a9/
%G en
%F IM2_1991_37_1_a9
A. I. Zhivkov. Geometry of invariant manifolds of a gyroscope in the field of a quadratic potential. Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 227-242. http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a9/

[1] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 883–938 | MR

[2] Dubrovin B. A., “Matrichnye konechnozonnye operatory”, Sovremennye problemy matematiki, 23, VINITI, M., 1983, 33–78 | MR

[3] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: Metody i prilozheniya, 2-e izd. pererab., Nauka, M., 1986 | MR

[4] Natanzon S. M., “Topologicheskaya klassifikatsiya par kommutiruyuschikh antigolomorfnykh involyutsii rimanovykh poverkhnostei”, UMN, 41:5 (1986), 191–192 | MR

[5] Zhivkov A. I., “Izospektralnye klassy matrichnykh konechnozonnykh operatorov s simmetriyami”, UMN, 44:1 (1989), 197–198 | MR | Zbl

[6] Fay J., Theta-functions on Riemann surfaces, Lect. Notes in Math., 352, Springer, 1973 | MR | Zbl

[7] Igusa J., Theta-functions, Springer, Berlin, 1972 | MR | Zbl

[8] Reiman A. G., “Integriruemye gamiltonovy sistemy, svyazannye s graduirovannymi algebrami Li”, Zap. nauch. semin. LOMI, 95, 1980, 3–54 | MR | Zbl

[9] Brun F., “Rotation krink fix punkt”, Ofversigt at Kongl. Svenska Vetenskaps Akad. Förhadl Stokholm, 7 (1893), 455–468