Geometry of invariant manifolds of a gyroscope in the field of a quadratic potential
Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 227-242
Voir la notice de l'article provenant de la source Math-Net.Ru
Real formulas are found (in terms of Prym $\theta$-functions) for the equation of rotation of a gyroscope in a field with an arbitrary quadratic potential. The number of components of the solutions are computed, depending on the “spectral data” of the problem.
@article{IM2_1991_37_1_a9,
author = {A. I. Zhivkov},
title = {Geometry of invariant manifolds of a gyroscope in the field of a quadratic potential},
journal = {Izvestiya. Mathematics },
pages = {227--242},
publisher = {mathdoc},
volume = {37},
number = {1},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a9/}
}
A. I. Zhivkov. Geometry of invariant manifolds of a gyroscope in the field of a quadratic potential. Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 227-242. http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a9/