Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1991_37_1_a9, author = {A. I. Zhivkov}, title = {Geometry of invariant manifolds of a gyroscope in the field of a quadratic potential}, journal = {Izvestiya. Mathematics }, pages = {227--242}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {1991}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a9/} }
A. I. Zhivkov. Geometry of invariant manifolds of a gyroscope in the field of a quadratic potential. Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 227-242. http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a9/
[1] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 883–938 | MR
[2] Dubrovin B. A., “Matrichnye konechnozonnye operatory”, Sovremennye problemy matematiki, 23, VINITI, M., 1983, 33–78 | MR
[3] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: Metody i prilozheniya, 2-e izd. pererab., Nauka, M., 1986 | MR
[4] Natanzon S. M., “Topologicheskaya klassifikatsiya par kommutiruyuschikh antigolomorfnykh involyutsii rimanovykh poverkhnostei”, UMN, 41:5 (1986), 191–192 | MR
[5] Zhivkov A. I., “Izospektralnye klassy matrichnykh konechnozonnykh operatorov s simmetriyami”, UMN, 44:1 (1989), 197–198 | MR | Zbl
[6] Fay J., Theta-functions on Riemann surfaces, Lect. Notes in Math., 352, Springer, 1973 | MR | Zbl
[7] Igusa J., Theta-functions, Springer, Berlin, 1972 | MR | Zbl
[8] Reiman A. G., “Integriruemye gamiltonovy sistemy, svyazannye s graduirovannymi algebrami Li”, Zap. nauch. semin. LOMI, 95, 1980, 3–54 | MR | Zbl
[9] Brun F., “Rotation krink fix punkt”, Ofversigt at Kongl. Svenska Vetenskaps Akad. Förhadl Stokholm, 7 (1893), 455–468