Algebraic three-folds and the diagram method
Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 157-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

The diagram method, which turned out to be so fertile in the classification of del Pezzo surfaces with log-terminal singularities, is extended to nonsingular projective 3-folds, and to those with very-simple-log-terminal singularities.
@article{IM2_1991_37_1_a6,
     author = {V. V. Nikulin},
     title = {Algebraic three-folds and the diagram method},
     journal = {Izvestiya. Mathematics },
     pages = {157--189},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a6/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - Algebraic three-folds and the diagram method
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 157
EP  - 189
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a6/
LA  - en
ID  - IM2_1991_37_1_a6
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T Algebraic three-folds and the diagram method
%J Izvestiya. Mathematics 
%D 1991
%P 157-189
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a6/
%G en
%F IM2_1991_37_1_a6
V. V. Nikulin. Algebraic three-folds and the diagram method. Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 157-189. http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a6/

[1] Alekseev V. A., “Drobnye indeksy log-poverkhnostei del Petstso”, Izv AN SSSR. Ser. matem., 52:6 (1988), 1288–1304 | MR

[2] Kawamata Yu., “The cone of curves of algebraic varieties”, Ann. Math., 119 (1984), 603–633 | DOI | MR | Zbl

[3] Khovanskii A. G., “Giperploskie secheniya mnogogrannikov, toricheskie mnogoobraziya i diskretnye gruppy v prostranstve Lobachevskogo”, Funkts. analiz i ego prilozh., 20:1 (1986), 50–61 | MR

[4] Mori Sh., “Threefolds whose canonical bundles are not numerically effective”, Ann. Math., 116 (1982), 133–176 | DOI | MR | Zbl

[5] Mori Sh., Mukai Sh., “On Fano $3$-folds with $B_2\geqslant2$”, Adv. Studies in Pure Mathem., 1 (1983), 101–129 | Zbl

[6] Nikulin V. V., “O klassifikatsii arifmeticheskikh grupp, porozhdennykh otrazheniyami, v prostranstvakh Lobachevskogo”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 113–142 | MR | Zbl

[7] Nikulin V. V., “Poverkhnosti del Petstso s log-terminalnymi osobennostyami”, Matem. sb., 180:2 (1989), 226–243 | MR | Zbl

[8] Nikulin V. V., “Poverkhnosti del Petstso s log-terminalnymi osobennostyami, II”, Izv. AN SSSR. Ser. matem., 52:5 (1988), 1032–1050 | MR

[9] Nikulin V. V., “Poverkhnosti del Petstso s log-terminalnymi osobennostyami, III”, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1316–1334 | MR

[10] Nikulin V. V., Algebraic surfaces with log-terminal singularities and nef anticanonical class and reflection groups in Lobachevsky spaces, Preprint MPI/89-28, Max-Planck-Institut für Mathematik, 1989

[11] Prokhorov M. N., “Otsutstvie diskretnykh grupp otrazhenii s nekompaktnym fundamentalnym mnogogrannikom konechnogo ob'ema v prostranstve Lobachevskogo bolshoi razmernosti”, Izv. AN SSSR. Ser. matem., 50:2 (1986), 413–424 | MR | Zbl

[12] Shokurov V. V., “Teorema o neobraschenii v nul”, Izv. AN SSSR. Ser. matem., 49:3 (1985), 635–651 | MR

[13] Vinberg E. B., “Otsutstvie kristallograficheskikh grupp otrazhenii v prostranstvakh Lobachevskogo bolshoi razmernosti”, Tr. Mosk. matem. ob-va, 47, 1984, 68–102 | MR | Zbl

[14] Griffiths Ph., Harris I., Principles of algebraic geometry, Pure and Applied Mathematics, Wiley Intersection Publication, New York, 1978 | MR | Zbl

[15] Hartshorne R., Algebraic geometry, Springer, 1977 | MR | Zbl