Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1991_37_1_a2, author = {A. A. Zolotykh}, title = {Trace identities of matrix superalgebras with an involution}, journal = {Izvestiya. Mathematics }, pages = {37--68}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {1991}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a2/} }
A. A. Zolotykh. Trace identities of matrix superalgebras with an involution. Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 37-68. http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a2/
[1] Razmyslov Yu. P., “Tozhdestva so sledom polnykh matrichnykh algebr nad polem kharakteristiki nul”, Izv. AN SSSR. Ser. matem., 38:4 (1974), 723–756 | MR | Zbl
[2] Procesi C., “The invariant theory of $n\times n$ matrices”, Advances in Math., 19:3 (1976), 306–381 | DOI | MR | Zbl
[3] Razmyslov Yu. P., “Tozhdestva so sledom i tsentralnye polinomy v matrichnykh superalgebrakh $M_{n,k}$”, Matem. sb., 128:2 (1985), 194–215 | MR | Zbl
[4] Procesi C., “Trace identities and standart diagrams”, Ring theory, Proc. 1978, Antwerp. Conf., Lect. Notes Pure Appl. Math., 51, 1978, 191–218 | MR
[5] Scheunert M., The theory of Lie superalgebras: An introduction, Lect. Notes Math., 716, 1979 | MR | Zbl
[6] Kemer A. R., “Mnogoobraziya i $\mathbf{Z}_2$-graduirovannye algebry”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 1042–1059 | MR
[7] Giambruno A., Polinomial identities with involution and the hyperoctahedral group, Lect. Notes Math., 1281, 1987 | MR | Zbl
[8] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR
[9] Kostrikin A. I., Vokrug Bernsaida, Nauka, M., 1986 | MR