$S$-algebras and Harish-Chandra modules over symmetric Lie algebras
Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Structural relations in Mickelsson $S$-algebras over symmetric Lie algebras are investigated. A description of regular (generalized) Harish-Chandra modules over symmetric Lie algebras of inner type is given.
@article{IM2_1991_37_1_a0,
     author = {D. P. Zhelobenko},
     title = {$S$-algebras and {Harish-Chandra} modules over symmetric {Lie} algebras},
     journal = {Izvestiya. Mathematics },
     pages = {1--17},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a0/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
TI  - $S$-algebras and Harish-Chandra modules over symmetric Lie algebras
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 1
EP  - 17
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a0/
LA  - en
ID  - IM2_1991_37_1_a0
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%T $S$-algebras and Harish-Chandra modules over symmetric Lie algebras
%J Izvestiya. Mathematics 
%D 1991
%P 1-17
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a0/
%G en
%F IM2_1991_37_1_a0
D. P. Zhelobenko. $S$-algebras and Harish-Chandra modules over symmetric Lie algebras. Izvestiya. Mathematics , Tome 37 (1991) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/IM2_1991_37_1_a0/

[1] Zhelobenko D. P., “$S$-algebry i moduli Verma nad reduktivnymi algebrami Li”, DAN SSSR, 273:4 (1983), 785–788 | MR | Zbl

[2] Zhelobenko D. P., “Ekstremalnye kotsikly na gruppakh Veilya”, Funkts. analiz i ego prilozh., 21:3 (1987), 11–21 | MR | Zbl

[3] Zhelobenko D. P., “Ekstremalnye proektory i obobschennye algebry Mikelsona nad reduktivnymi algebrami Li”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 758–773 | MR

[4] Mickelsson J., “Step algebras of semisimple subalgebras of Lie algebras”, Rept. Math. Phys., 4 (1973), 307–318 | DOI | MR | Zbl

[5] Van den Hombergh, “A note on Mickelsson's step algebra”, Indag. Math., 37:2 (1975), 42–47 | MR

[6] Van den Hombergh, Harish–Chandra modules and representations of step algebra, Reprint, Krips, Repro–Meppel, 1976

[7] Mickelsson J., “A description of discrete series using step algebra”, Math. Scand., 41 (1977), 63–78 | MR | Zbl

[8] Mickelsson J., “Discrete series of Lie superalgebras”, Rept. Math. Phys., 18:2 (1980), 197–21 | DOI | MR

[9] Zhelobenko D. P., “Minimalnye $K$-tipy i klassifikatsiya neprivodimykh predstavlenii reduktivnykh grupp Li”, Funkts. analiz i ego prilozh., 18:4 (1984), 79–80 | MR | Zbl

[10] Zhelobenko D. P., “$S$-algebry i moduli Kharish–Chandry nad reduktivnymi algebrami Li”, DAN SSSR, 283:6 (1985), 1306–1308 | MR | Zbl

[11] Schmid W., “$L^2$-cohomology and discrete series”, Ann. Math., 103:2 (1976), 375–394 | DOI | MR | Zbl

[12] Vogan D. A., “The algebraic structure of the representations of semisimple Lie groups, I”, Ann. Math., 109:1 (1979), 1–60 | DOI | MR | Zbl

[13] Vogan D. A., Representations of real semisimple groups, Birkhauser, 1982

[14] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR

[15] Goto M., Grosskhans F., Poluprostye algebry Li, Mir, M., 1981 | MR | Zbl

[16] Zhelobenko D. P., Garmonicheskii analiz funktsii na poluprostykh kompleksnykh gruppakh Li, Nauka, M., 1974 | MR | Zbl

[17] Enright T. I., Varadarajan V. S., “On an infinitesimal characterization of the discrete series”, Ann. Math., 102 (1975), 1–15 | DOI | MR | Zbl

[18] Watlach N. R., “On the Enright–Varadarajan modules A characterization of the discrete series”, Ann. Sci. Norm. Super. 4e ser., 9 (1976), 81–102 | MR

[19] Kekkäläinen P., “On irreducible $A_2$-Finite $G_2$-modules”, J. Algebra, 117:1, 72–80 | DOI