Linearizability of holomorphic mappings of generating manifolds of codimension~2 in $\mathbf C^4$
Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 655-667

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider the problem of uniqueness of so-called normal coordinates for real-analytic generating manifolds of codimension 2 in $\mathbf C^4$. For nonumbilic surfaces we find a class of coordinates which is preserved only by linear transformations.
@article{IM2_1991_36_3_a8,
     author = {A. V. Loboda},
     title = {Linearizability of holomorphic mappings of generating manifolds of codimension~2 in $\mathbf C^4$},
     journal = {Izvestiya. Mathematics },
     pages = {655--667},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a8/}
}
TY  - JOUR
AU  - A. V. Loboda
TI  - Linearizability of holomorphic mappings of generating manifolds of codimension~2 in $\mathbf C^4$
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 655
EP  - 667
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a8/
LA  - en
ID  - IM2_1991_36_3_a8
ER  - 
%0 Journal Article
%A A. V. Loboda
%T Linearizability of holomorphic mappings of generating manifolds of codimension~2 in $\mathbf C^4$
%J Izvestiya. Mathematics 
%D 1991
%P 655-667
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a8/
%G en
%F IM2_1991_36_3_a8
A. V. Loboda. Linearizability of holomorphic mappings of generating manifolds of codimension~2 in $\mathbf C^4$. Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 655-667. http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a8/