Linearizability of holomorphic mappings of generating manifolds of codimension~2 in $\mathbf C^4$
Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 655-667.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider the problem of uniqueness of so-called normal coordinates for real-analytic generating manifolds of codimension 2 in $\mathbf C^4$. For nonumbilic surfaces we find a class of coordinates which is preserved only by linear transformations.
@article{IM2_1991_36_3_a8,
     author = {A. V. Loboda},
     title = {Linearizability of holomorphic mappings of generating manifolds of codimension~2 in $\mathbf C^4$},
     journal = {Izvestiya. Mathematics },
     pages = {655--667},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a8/}
}
TY  - JOUR
AU  - A. V. Loboda
TI  - Linearizability of holomorphic mappings of generating manifolds of codimension~2 in $\mathbf C^4$
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 655
EP  - 667
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a8/
LA  - en
ID  - IM2_1991_36_3_a8
ER  - 
%0 Journal Article
%A A. V. Loboda
%T Linearizability of holomorphic mappings of generating manifolds of codimension~2 in $\mathbf C^4$
%J Izvestiya. Mathematics 
%D 1991
%P 655-667
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a8/
%G en
%F IM2_1991_36_3_a8
A. V. Loboda. Linearizability of holomorphic mappings of generating manifolds of codimension~2 in $\mathbf C^4$. Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 655-667. http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a8/

[1] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3 (1974), 213–271 | MR

[2] Burns D., Shneider S., Wells R. O. Jr., “Deformations of strictly pseudoconvex domains”, Inv. Math., 46:3 (1978), 237–253 | DOI | MR | Zbl

[3] Kruzhilin N. G., Loboda A. V., “Linearizatsiya lokalnykh avtomorfizmov psevdovypuklykh poverkhnostei”, DAN CCSR, 271:2 (1983), 280–282 | MR | Zbl

[4] Loboda A. V., O spetsialnykh formakh uravneniya psevdovypukloi poverkhnosti, Dep. v VINITI No 3254-84, 1984

[5] Loboda A. V., “O golomorfnykh otobrazheniyakh veschestvennykh podmnogoobrazii v kompleksnykh prostranstvakh”, Tezisy Vsesoyuzn. konf. po kompleksnomu analizu, Tashkent, 1985, 63–64 | MR

[6] Ezhov V. V., “O linearizatsii avtomorfizmov veschestvenno-analiticheskoi giperpoverkhnosti”, Izv. AN SSSR. Ser. matem., 49:4 (1985), 731–765 | MR | Zbl

[7] Ivashkovich S. M., “Prodolzhenie lokalno bigolomorfnykh otobrazhenii oblastei v kompleksnoe proektivnoe prostranstvo”, Izv. AN SSSR. Ser. matem., 47:1 (1983), 197–206 | MR | Zbl

[8] Beloshapka V. K., Vitushkin A. G., “Otsenki radiusa skhodimosti stepennykh ryadov, zadayuschikh otobrazheniya analiticheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 45:5 (1981), 962–984 | MR | Zbl

[9] Vitushkin A. G., “Veschestvenno-analiticheskie giperpoverkhnosti kompleksnykh mnogoobrazii”, UMN, 40:2(242) (1985), 3–31 | MR | Zbl

[10] Tumanov A. E., Khenkin G. M., “Lokalnaya kharakterizatsiya golomorfnykh avtomorfizmov oblastei Zigelya”, Funkts. analiz i ego prilozh., 17:4 (1983), 49–61 | MR | Zbl

[11] Moser J. K., Webster S. M., “Normal forms for real surfaces in $\mathbf{C}^2$ near complex tangent hyperbolic surface transformations”, Acta Math., 150:3,4 (1983), 255–296 | DOI | MR | Zbl

[12] Beloshapka V. K., “O razmernosti grupp avtomorfizmov analiticheskoi giperpoverkhnosti”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 243–266 | MR | Zbl

[13] Tanaka N., “On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables”, J. Math. Soc. Japan, 14 (1962), 397–429 | MR | Zbl

[14] Loboda A. V., “Porozhdayuschie veschestvenno-analiticheskie mnogoobraziya korazmernosti $2$ v $\mathbf{C}^4$ i ikh bigolomorfnye otobrazheniya”, Izv. AN SSSR. Ser. matem., 52:5 (1988), 970–990 | MR | Zbl