Stable algebra in Morse theory
Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 629-653

Voir la notice de l'article provenant de la source Math-Net.Ru

Stable algebra is developed as needed in Morse theory. New estimates are found for the number of critical points of Morse functions, and conditions are found for the existence of minimal Morse functions on non-simply-connected manifolds.
@article{IM2_1991_36_3_a7,
     author = {V. V. Sharko},
     title = {Stable algebra in {Morse} theory},
     journal = {Izvestiya. Mathematics },
     pages = {629--653},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a7/}
}
TY  - JOUR
AU  - V. V. Sharko
TI  - Stable algebra in Morse theory
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 629
EP  - 653
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a7/
LA  - en
ID  - IM2_1991_36_3_a7
ER  - 
%0 Journal Article
%A V. V. Sharko
%T Stable algebra in Morse theory
%J Izvestiya. Mathematics 
%D 1991
%P 629-653
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a7/
%G en
%F IM2_1991_36_3_a7
V. V. Sharko. Stable algebra in Morse theory. Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 629-653. http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a7/