Equatios on a superspace
Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 597-627

Voir la notice de l'article provenant de la source Math-Net.Ru

The construction of a general theory of partial differential equations on a superspace is continued in the framework of functional superanalysis. Superanalogues of the spaces $\mathscr S(\mathbf R^n)$ and $\mathscr D(\mathbf R^n)$ of generalized functions are introduced; a theorem is proved on the existence of a fundamental solution for linear differential equations with constant coefficients on a superspace. In contrast to the scalar case, there exist differential operators not having fundamental solutions. Formulas are obtained for the fundamental solutions of the Laplace operator, the heat conduction operator, the Schrödinger operator, the d'Alembert operator, and the Helmholtz operator on a superspace. There is a discussion of the role of the nilpotence condition for even ghosts in a commutative superalgebra in the construction of a theory of generalized functions.
@article{IM2_1991_36_3_a6,
     author = {A. Yu. Khrennikov},
     title = {Equatios on a superspace},
     journal = {Izvestiya. Mathematics },
     pages = {597--627},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a6/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - Equatios on a superspace
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 597
EP  - 627
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a6/
LA  - en
ID  - IM2_1991_36_3_a6
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T Equatios on a superspace
%J Izvestiya. Mathematics 
%D 1991
%P 597-627
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a6/
%G en
%F IM2_1991_36_3_a6
A. Yu. Khrennikov. Equatios on a superspace. Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 597-627. http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a6/