Equatios on a superspace
Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 597-627.

Voir la notice de l'article provenant de la source Math-Net.Ru

The construction of a general theory of partial differential equations on a superspace is continued in the framework of functional superanalysis. Superanalogues of the spaces $\mathscr S(\mathbf R^n)$ and $\mathscr D(\mathbf R^n)$ of generalized functions are introduced; a theorem is proved on the existence of a fundamental solution for linear differential equations with constant coefficients on a superspace. In contrast to the scalar case, there exist differential operators not having fundamental solutions. Formulas are obtained for the fundamental solutions of the Laplace operator, the heat conduction operator, the Schrödinger operator, the d'Alembert operator, and the Helmholtz operator on a superspace. There is a discussion of the role of the nilpotence condition for even ghosts in a commutative superalgebra in the construction of a theory of generalized functions.
@article{IM2_1991_36_3_a6,
     author = {A. Yu. Khrennikov},
     title = {Equatios on a superspace},
     journal = {Izvestiya. Mathematics },
     pages = {597--627},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a6/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - Equatios on a superspace
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 597
EP  - 627
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a6/
LA  - en
ID  - IM2_1991_36_3_a6
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T Equatios on a superspace
%J Izvestiya. Mathematics 
%D 1991
%P 597-627
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a6/
%G en
%F IM2_1991_36_3_a6
A. Yu. Khrennikov. Equatios on a superspace. Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 597-627. http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a6/

[1] Schwinger J. A., “A Note of the Quantum Dinamical Principle”, Phil. Mag., 44:3 (1953), 1171–1193 | MR

[2] Schwinger J. A., “The theory of Quantized Fields. I”, Phys. Rev., 82:6 (1951), 1–30 | DOI | MR

[3] Martin J. L., “Generalized classical dynamics and the “classical analogue” of a Fermi oscillator”, Proc. Roy. Soc., A-251:1267 (1959), 533–543 | MR

[4] Martin J. L., “The Feynrhan principle for a Fermi system”, Proc. Roy. Soc., A-251:1267 (1959), 543–549 | MR | Zbl

[5] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1965 | MR

[6] Berezin F. A., Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Nauka, M., 1933

[7] Leites D. A., Teoriya supermnogoobrazii, Petrozav. gos. un-t, Petrozavodsk, 1983 | Zbl

[8] Ogievetskii V. I., Sokachev E. S., “Supersimmetriya i superprostranstvo”, Itogi nauki i tekhniki. Matem. analiz, 22, 1984, 246–267 | MR

[9] Aleksandrov P. S., Teoriya funktsii deistvitelnogo peremennogo i teoriya topologicheskikh prostranstv, Nauka, M., 1978 | MR

[10] Salam A., Strathdee F., “Super-gauge transformations”, Nucl. Phys., B-76:3 (1974), 477–482 | DOI | MR

[11] Vladimirov V. S., Volovich I. V., “Superanaliz. Differentsialnoe i integralnoe ischislenie”, DAN SSSR, 273:1 (1983), 26–31 | MR | Zbl

[12] Vladimirov V. S, Volovich I. V., “Superanaliz. Integralnoe ischislenie”, DAN SSSR, 276:3 (1984), 521–525 | MR | Zbl

[13] Volovich I. V., “$\Lambda$-supermnogoobraziya i rassloeniya”, DAN SSSR, 269:3 (1983), 524–528 | MR

[14] Volovich I. V., “Supersimmetrichnaya teoriya Yanga–Millsa kak golomorfnoe rassloenie nad tvistorami i superavtodualnost”, TMF, 55:1 (1983), 39–43 | MR

[15] Vladimirov V. S., Volovich I. V., “Superanaliz. I: Differentsialnoe ischislenie”, TMF, 59:1 (1984), 3–27 | MR | Zbl

[16] Vladimirov V. S., Volovich I. V., “Superanaliz. II: Integralnoe ischislenie”, TMF, 60:2 (1984), 169–198 | MR | Zbl

[17] De Witt B. S., Supermanifolds, Cambridge, 1984

[18] Rogers A., “A global theory of supermanifolds”, J. Math. Phys., 22:5 (1981), 939–945 | DOI | MR | Zbl

[19] Rogers A., “Super Lie groups: global topology and local structure”, J. Math. Phys., 21:6 (1980), 724–731 | DOI | MR

[20] Rogers A., “Consistent superspace integration”, J. Math. Phys., 26:3 (1985), 385–392 | DOI | MR | Zbl

[21] Khrennikov A. Yu., “Funktsionalnyi superanaliz”, UMN, 43:2 (1988), 87–114 | MR | Zbl

[22] Khrennikov A. Yu., “Superanaliz: teoriya obobschennykh funktsii i psevdodifferentsialnykh operatorov”, TMF, 73:3 (1987), 420–429 | MR

[23] Khrennikov A. Yu., “Beskonechnomernye psevdodifferentsialnye operatory”, Izv. AN SSSR. Ser. matem., 51:6 (1987), 1285–1291

[24] Khrennikov A. Yu., “Psevdodifferentsialnye uravneniya v funktsionalnom superanalize. I: Metod preobrazovaniya Fure”, Differents. uravneniya, 24:12 (1988), 2144–2157 | MR

[25] Khrennikov A. Yu., “Psevdodifferentsialnye uravneniya v funktsionalnom superanalize. II: Formula Feinmana–Katsa”, Differents. uravneniya, 25:2 (1989), 314–324 | MR

[26] Khrennikov A. Yu., “Psevdotopologicheskie kommutativnye superalgebry s nilpotentnymi dukhami”, Matem. zametki, 48:2 (1990), 114–122 | MR | Zbl

[27] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[28] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976 | Zbl

[29] Devis M., Prikladnoi nestandartnyi analiz, Nauka, M., 1980 | MR

[30] Shefer X., Topologicheskie vektornye prostranstva, Mir, M., 1970

[31] Carreras P., Bonet J., Barrelled locally convex spaces, North-Holl, Amsterdam, 1987 | MR | Zbl

[32] Grauert G., Remmert R., Analiticheskie lokalnye algebry, Nauka, M., 1988 | MR | Zbl

[33] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, Nauka, M., 1970

[34] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1976 | MR

[35] Salam A., Strathdee J., “Feynman rules for superfields”, Nucl. Phys., B-86:1 (1975), 142–152 | DOI | MR

[36] Golfand D. Yu., Likhtman E., “Rasshirenie algebry generatorov gruppy Puankare i narushenie $P$-invariantnosti”, Pisma v ZhETF, 13 (1971), 451–455

[37] Volkov D. V., Akulov V. P., “O vozmozhnom universalnom vzaimodeistvii neitrino”, Pisma v ZhETF, 16:6 (1979), 621–624

[38] Volkov D. V., Akulov V. P., “Goldstounovskie polya so spinom polovina”, TMF, 18:1 (1974), 39–50 | MR

[39] Vess Yu., Begger D., Supersimmetriya i supergravitatsiya, Mir, M., 1986 | MR

[40] Batchelor M., “Two approaches to supermanifolds”, Trans. Amer. Math. Soc., 258:1 (1980), 257–270 | DOI | MR | Zbl

[41] Batchelor M., “The structure of supermanifolds”, Trans. Amer. Math. Soc., 253:2 (1979), 329–338 | DOI | MR | Zbl

[42] Green M., Schwarz J., “Superstring field theory”, Nucl. Phys., B-243:3 (1984), 475–587 | DOI | MR

[43] Awada R., “Non-commutative supergeometry and superstring field theories”, Nucl. Phys., B-256:1,2 (1987), 361–374

[44] Friedan D., “String field theory”, Nucl. Phys., 271:3,4 (1986), 540–560 | DOI | MR

[45] West B., An introduction to string field theory; a pedestrian approach to the covariand formulation, Preprint La-UR-86-1492, 1986

[46] Blokhintsev D. I., Prostranstvo i vremya v mikromire, Nauka, M., 1982

[47] Shvinger Yu., Chastitsy. Istochniki. Polya, M., 1973

[48] Edvards R., Funktsionalnyi analiz, Mir, M., 1968

[49] Smolyanov O. G., Analiz na topologicheskikh lineinykh prostranstvakh i ego prilozheniya, MGU, M., 1979

[50] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1980 | MR

[51] Uglanov A. V., “Ob odnoi konstruktsii feinmanovskogo integrala”, DAN SSSR, 243:6 (1978), 1406–1409 | MR | Zbl

[52] Uglanov A. V., “Differentsialnye uravneniya s postoyannymi koeffitsientami dlya obobschennykh mer na gilbertovom prostranstve”, Izv. AN SSSR. Ser. matem., 39:2 (1975), 438–455 | MR

[53] Khrennikov A. Yu., “Uravneniya s beskonechnomernymi psevdodifferentsialnymi operatorami”, DAN SSSR, 267:6 (1982), 1313–1318 | MR | Zbl

[54] Khrennikov A. Yu., “Vtorichnoe kvantovanie i psevdodifferentsialnye operatory”, TMF, 66:3 (1986), 339–349 | MR | Zbl

[55] Khrennikov A. Yu., “Integrirovanie po obobschennym meram na topologicheskikh lineinykh prostranstvakh”, Tr. MMO, 49, 1986, 113–129 | MR

[56] Khrennikov A. Yu., “Teorema suschestvovaniya resheniya dlya beskonechnomernogo uravneniya Shredingera s kvadratichnym potentsialom”, UMN, 39:1 (1984), 163–164 | MR | Zbl

[57] Khrennikov A. Yu., “Teorema Lyapunova dlya znakoperemennykh mer”, Tr. mezhdunarodnoi konferentsii po teorii veroyatnostei i matem. statistike, Vilnyus, 1985, 134–135

[58] Khrennikov A. Yu., “Differentsialnye uravneniya v lokalno vypuklykh prostranstvakh i evolyutsionnye psevdodifferentsialnye uravneniya”, Differents. uravneniya, 22:9 (1986), 1034–1046 | MR

[59] Khrennikov A. Yu., “Fundamentalnye resheniya evolyutsionnykh psevdodifferentsialnykh uravnenii”, Differents. uravneniya, 21:2 (1985), 346–348 | MR | Zbl

[60] Khrennikov A. Yu., “Mera Feinmana v fazovom prostranstve i simvoly beskonechnomernykh psevdodifferentsialnykh operatorov”, Matem. zametki, 37:5 (1985), 734–742 | MR | Zbl

[61] Khrennikov A. Yu., “Feinmanovskie mery na lokalno vypuklykh prostranstvakh”, SMZh, 29:4 (1988), 180–183 | MR

[62] Berezin F. A., Marinov M. C., “Particle spin dynamics as the Grassman variant of classical mechanics”, Ann. Phys., 104:2 (1977), 386–362