On the asymptotic behaviour of the Titchmarsh--Weyl $m$-function
Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 487-496

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic expansion $$ m(z)=\frac{i}{\sqrt z}+\sum_{k=1}^{n+1}a_k(-z)^{-(k+2)/2}+\varepsilon_n(z),\quad \varepsilon_n(z)=o(|z|^{-(k+3)/2}), $$ valid outside any angle $|{\operatorname{tg}\theta}|\varepsilon$, $\varepsilon>0$, is obtained for the Weyl–Titchmarsh function of the Sturm-Liouville problem on the half-axis with potential $g(x)\in C^n[0,\delta)$.
@article{IM2_1991_36_3_a1,
     author = {A. A. Danielyan and B. M. Levitan},
     title = {On the asymptotic behaviour of the {Titchmarsh--Weyl} $m$-function},
     journal = {Izvestiya. Mathematics },
     pages = {487--496},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a1/}
}
TY  - JOUR
AU  - A. A. Danielyan
AU  - B. M. Levitan
TI  - On the asymptotic behaviour of the Titchmarsh--Weyl $m$-function
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 487
EP  - 496
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a1/
LA  - en
ID  - IM2_1991_36_3_a1
ER  - 
%0 Journal Article
%A A. A. Danielyan
%A B. M. Levitan
%T On the asymptotic behaviour of the Titchmarsh--Weyl $m$-function
%J Izvestiya. Mathematics 
%D 1991
%P 487-496
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a1/
%G en
%F IM2_1991_36_3_a1
A. A. Danielyan; B. M. Levitan. On the asymptotic behaviour of the Titchmarsh--Weyl $m$-function. Izvestiya. Mathematics , Tome 36 (1991) no. 3, pp. 487-496. http://geodesic.mathdoc.fr/item/IM2_1991_36_3_a1/