Triples of infinite iterates of metrizable functors
Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 411-433.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concepts of metrizable, uniformly metrizable, and perfectly metrizable functors are introduced. The triple $\mathscr F^+$, $\mathscr F^{++}$, $\mathscr F^\omega$ of infinite iterates of a perfectly metrizable functor $\mathscr F$ is defined. The geometric properties of such triples are investigated for the continuous hyperspace functor and the probability measure functor.
@article{IM2_1991_36_2_a9,
     author = {V. V. Fedorchuk},
     title = {Triples of infinite iterates of metrizable functors},
     journal = {Izvestiya. Mathematics },
     pages = {411--433},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a9/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - Triples of infinite iterates of metrizable functors
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 411
EP  - 433
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a9/
LA  - en
ID  - IM2_1991_36_2_a9
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T Triples of infinite iterates of metrizable functors
%J Izvestiya. Mathematics 
%D 1991
%P 411-433
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a9/
%G en
%F IM2_1991_36_2_a9
V. V. Fedorchuk. Triples of infinite iterates of metrizable functors. Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 411-433. http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a9/

[1] Zarichnyi M. M., “Iterirovannye superrasshireniya”, Obschaya topologiya. Otobrazheniya topologicheskikh prostranstv, 1986, 45–59, MGU, M. | MR

[2] Kantorovich L. V., Rubinshtein G. Sh., “Ob odnom funktsionalnom prostranstve i nekotorykh ekstremalnykh zadachakh, 2”, Dokl. AN SSSR, 115:6 (1957), 1058–1061 | Zbl

[3] Pelchinskii A., Lineinye prodolzheniya, lineinye usredneniya i ikh primeneniya k lineinoi topologicheskoi klassifikatsii prostranstv nepreryvnykh funktsii, Mir, M., 1970

[4] Fedorchuk V. V., “Kovariantnye funktory v kategorii kompaktov, absolyutnye retrakty i $Q$-mnogoobraziya”, Uspekhi matem. nauk, 36:3 (1981), 177–195 | MR | Zbl

[5] Fedorchuk V. V., “O nekotorykh geometricheskikh svoistvakh kovariantnykh funktorov”, Uspekhi matem. nauk, 39:5 (1984), 169–208 | MR | Zbl

[6] Fedorchuk V. V., “Myagkie otobrazheniya, mnogoznachnye retraktsii i funktory”, Uspekhi matem. nauk, 41:6 (1986), 121–159 | MR | Zbl

[7] Fedorchuk V. V., “Rassloeniya prostranstv veroyatnostnykh mer i geometriya beskonechnykh iteratsii nekotorykh monadichnykh funktorov”, Dokl. AN SSSR, 1987

[8] Chepmen T., Lektsii o $Q$-mnogoobraziyakh, Mir, M., 1961

[9] Schepin E. V., “Funktory i neschetnye stepeni kompaktov”, Uspekhi matem. nauk, 36:3 (1981), 3–61 | MR

[10] Bessaga Cz., Pelczynski A., “Selected topics in infinite-dimensional topology”, Monogr. Matem., 58, PWN, Warszawa, 1975 | MR | Zbl

[11] Bing R. H., “Partitioning continuous curves”, Bull. Amer. Math. Soc., 58 (1952), 536–556 | DOI | MR | Zbl

[12] Brown M., “Some application of an approximation theorem for inverse limits”, Proc. Amer. Math. Soc., 11:3 (1960), 478–483 | DOI | MR | Zbl

[13] Curtis D. W., Schori R. M., “Hyperspaces of Peano continua are Hilbert cubes”, Fund. Math., 101 (1978), 19–39 | MR

[14] Torunczyk H., West J., “A Hilbert space limit for the iterated hyperspace functor”, Proc. Amer. Math. Soc., 89:2 (1983), 329–335 | DOI | MR | Zbl