On integral manifolds of multifrequency oscillatory systems
Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 391-409.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are found for the existence of an integral manifold for a nonlinear oscillatory system with slowly varying frequencies, and an algorithm for constructing it is described. A theorem is proved on the conditional asymptotic stability of the integral manifold with respect to a set of initial values for the slow variables. Smoothness is also studied, and bounds on the partial derivatives of the function that describes the integral manifold are obtained.
@article{IM2_1991_36_2_a8,
     author = {A. M. Samoilenko and R. I. Petrishin},
     title = {On integral manifolds of multifrequency oscillatory systems},
     journal = {Izvestiya. Mathematics },
     pages = {391--409},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a8/}
}
TY  - JOUR
AU  - A. M. Samoilenko
AU  - R. I. Petrishin
TI  - On integral manifolds of multifrequency oscillatory systems
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 391
EP  - 409
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a8/
LA  - en
ID  - IM2_1991_36_2_a8
ER  - 
%0 Journal Article
%A A. M. Samoilenko
%A R. I. Petrishin
%T On integral manifolds of multifrequency oscillatory systems
%J Izvestiya. Mathematics 
%D 1991
%P 391-409
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a8/
%G en
%F IM2_1991_36_2_a8
A. M. Samoilenko; R. I. Petrishin. On integral manifolds of multifrequency oscillatory systems. Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 391-409. http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a8/

[1] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR | Zbl

[2] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1973 | MR

[3] Mitropolskii Yu. A., Samoilenko A. M., Asimptoticheskoe issledovanie slabo nelineinykh sistem, Preprint IM-76-5, In-t matematiki AN USSR, Kiev, 1976

[4] Samoilenko A. M., “O gladkosti po parametru invariantnogo tora kvazilineinoi sistemy differentsialnykh uravnenii”, Ukr. matem. zhurnal, 38:5 (1986), 605–618 | MR

[5] Samoilenko A. M., Elementy matematicheskoi teorii mnogochastotnykh kolebanii. Invariantnye tory, Nauka, M., 1987 | MR

[6] Arnold V. I., “Usloviya primenimosti i otsenka pogreshnosti metoda usredneniya dlya sistem, kotorye v protsesse evolyutsii prokhodyat cherez rezonansy”, Dokl. AN SSSR, 161:1 (1965), 9–12 | MR

[7] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[8] Volosov V. M., Morgunov B. I., Metod osredneniya v teorii nelineinykh kolebatelnykh sistem, MGU, M., 1971

[9] Gurtovnik A. S., Neimark Yu. I., “O sinkhronizatsii dinamicheskikh sistem”, Prikl. matem. i mekh., 38:5 (1974), 800–809 | MR | Zbl

[10] Anosov D. V., “Osrednenie v sistemakh obyknovennykh differentsialnykh uravnenii s bystrokoleblyuschimisya resheniyami”, Izv. AN SSSR Ser. matem., 24:5 (1960), 721–742 | MR | Zbl

[11] Neishtadt A. I., “Ob osrednenii v mnogochastotnykh sistemakh”, Dokl. AN SSSR, 226:6 (1976), 1295–1298 | MR | Zbl

[12] Bakhtin V. I., “Ob usrednenii v mnogochastotnykh sistemakh”, Funk. analiz i ego prilozh., 20:2 (1986), 1–7 | MR | Zbl

[13] Pronchatov V. E., “Ob otsenke pogreshnosti metoda usredneniya v dvukhchastotnoi zadache”, Matem. sb., 134(176):1 (1987), 28–41 | MR | Zbl

[14] Samoilenko A. M., Petrishin R. I., “Ravnomernye otsenki odnomernykh ostsilliruyuschikh integralov”, Dokl. AN USSR. Ser. A, 11 (1987), 12–15 | MR

[15] Plis V. A., Integralnye mnozhestva periodicheskikh sistem differentsialnykh uravnenii, Nauka, M., 1977 | MR