On integral manifolds of multifrequency oscillatory systems
Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 391-409

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are found for the existence of an integral manifold for a nonlinear oscillatory system with slowly varying frequencies, and an algorithm for constructing it is described. A theorem is proved on the conditional asymptotic stability of the integral manifold with respect to a set of initial values for the slow variables. Smoothness is also studied, and bounds on the partial derivatives of the function that describes the integral manifold are obtained.
@article{IM2_1991_36_2_a8,
     author = {A. M. Samoilenko and R. I. Petrishin},
     title = {On integral manifolds of multifrequency oscillatory systems},
     journal = {Izvestiya. Mathematics },
     pages = {391--409},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a8/}
}
TY  - JOUR
AU  - A. M. Samoilenko
AU  - R. I. Petrishin
TI  - On integral manifolds of multifrequency oscillatory systems
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 391
EP  - 409
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a8/
LA  - en
ID  - IM2_1991_36_2_a8
ER  - 
%0 Journal Article
%A A. M. Samoilenko
%A R. I. Petrishin
%T On integral manifolds of multifrequency oscillatory systems
%J Izvestiya. Mathematics 
%D 1991
%P 391-409
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a8/
%G en
%F IM2_1991_36_2_a8
A. M. Samoilenko; R. I. Petrishin. On integral manifolds of multifrequency oscillatory systems. Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 391-409. http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a8/