An analog of the Riemann--Hurwitz formula for one type of $l$-extensions of algebraic number fields
Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 325-347

Voir la notice de l'article provenant de la source Math-Net.Ru

For an $l$-extension $K/k$ of an algebraic number field satisfying certain appropriate conditions the author obtains a formula analogous to the Riemann–Hurwitz formula. This formula connects the Iwasawa invariants of the fields $k_\infty$ and $K\cdot k_\infty$, where $k_\infty$ is some $\mathbf Z_l$-extension of the field $k$. It is not assumed that $K$ and $k$ are fields of CM-type.
@article{IM2_1991_36_2_a5,
     author = {L. V. Kuz'min},
     title = {An analog of the {Riemann--Hurwitz} formula for one type of $l$-extensions of algebraic number fields},
     journal = {Izvestiya. Mathematics },
     pages = {325--347},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a5/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - An analog of the Riemann--Hurwitz formula for one type of $l$-extensions of algebraic number fields
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 325
EP  - 347
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a5/
LA  - en
ID  - IM2_1991_36_2_a5
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T An analog of the Riemann--Hurwitz formula for one type of $l$-extensions of algebraic number fields
%J Izvestiya. Mathematics 
%D 1991
%P 325-347
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a5/
%G en
%F IM2_1991_36_2_a5
L. V. Kuz'min. An analog of the Riemann--Hurwitz formula for one type of $l$-extensions of algebraic number fields. Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 325-347. http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a5/