An analog of the Riemann--Hurwitz formula for one type of $l$-extensions of algebraic number fields
Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 325-347.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an $l$-extension $K/k$ of an algebraic number field satisfying certain appropriate conditions the author obtains a formula analogous to the Riemann–Hurwitz formula. This formula connects the Iwasawa invariants of the fields $k_\infty$ and $K\cdot k_\infty$, where $k_\infty$ is some $\mathbf Z_l$-extension of the field $k$. It is not assumed that $K$ and $k$ are fields of CM-type.
@article{IM2_1991_36_2_a5,
     author = {L. V. Kuz'min},
     title = {An analog of the {Riemann--Hurwitz} formula for one type of $l$-extensions of algebraic number fields},
     journal = {Izvestiya. Mathematics },
     pages = {325--347},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a5/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - An analog of the Riemann--Hurwitz formula for one type of $l$-extensions of algebraic number fields
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 325
EP  - 347
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a5/
LA  - en
ID  - IM2_1991_36_2_a5
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T An analog of the Riemann--Hurwitz formula for one type of $l$-extensions of algebraic number fields
%J Izvestiya. Mathematics 
%D 1991
%P 325-347
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a5/
%G en
%F IM2_1991_36_2_a5
L. V. Kuz'min. An analog of the Riemann--Hurwitz formula for one type of $l$-extensions of algebraic number fields. Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 325-347. http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a5/

[1] Iwasawa K., “On the $\mu$-invariants of $\mathbf{Z}_l$-extensions”, Number theory, algebraic geometry and commutative algebra in honour Akizuki, Tokyo, 1973, 1–11 | MR | Zbl

[2] Iwasawa K., “On $\mathbf{Z}_l$-extensions of algebraic number fields”, Ann. Math., 98 (1973), 246–326 | DOI | MR | Zbl

[3] Iwasawa K., “Riemann–Hurwitz formula and $p$-adic Galois representations for number fields”, Tohoku Math. J., 33:2 (1981), 263–288 | DOI | MR | Zbl

[4] Kida Y., “$l$-extensions of CM-fields and cyclotomic invariants”, J. Number Theory, 12 (1980), 519–528 | DOI | MR | Zbl

[5] Kuzmin L. V., “Modul Teita polei algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 36:2 (1972), 267–327 | MR

[6] Kuzmin L. V., “Kogomologicheskaya razmernost nekotorykh grupp Galua”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 487–495 | MR

[7] Kuzmin L. V., “Nekotorye teoremy dvoistvennosti dlya krugovykh $\Gamma$-rasshirenii polei algebraicheskikh chisel SM-tipa”, Izv. AN SSSR. Ser. matem., 43:3 (1979), 483–546 | MR

[8] Kuzmin L. V., “Nekotorye zamechaniya o $l$-adicheskoi teoreme Dirikhle i $l$-adicheskom regulyatore”, Izv. AN SSSR. Ser. matem., 45:6 (1981), 1203–1240 | MR

[9] Kuzmin L. V., “Nekotorye zamechaniya o $l$-adicheskom regulyatore, II”, Izv. AN SSSR. Ser. matem., 53:4 (1989), 782–813 | MR