Spectral theory in $p$-adic quantum mechanics, and representation theory
Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 281-309.

Voir la notice de l'article provenant de la source Math-Net.Ru

Spectral theory is discussed for a harmonic oscillator in $p$-adic quantum mechanics. The problem of the decomposition into irreducible representations of the restriction of a projective representation of the symplectic group to a compact abelian subgroup is solved, the dimensions of the invariant subspaces are calculated, and the eigenfunctions are analyzed. Spectral problems are considered for $p$-adic pseudodifferential operators of Schrödinger type. A complete orthonormal system of eigenfunctions is constructed for the $p$-adic analog of the differentiation operator.
@article{IM2_1991_36_2_a3,
     author = {V. S. Vladimirov and I. V. Volovich and E. I. Zelenov},
     title = {Spectral theory in $p$-adic quantum mechanics, and representation theory},
     journal = {Izvestiya. Mathematics },
     pages = {281--309},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a3/}
}
TY  - JOUR
AU  - V. S. Vladimirov
AU  - I. V. Volovich
AU  - E. I. Zelenov
TI  - Spectral theory in $p$-adic quantum mechanics, and representation theory
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 281
EP  - 309
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a3/
LA  - en
ID  - IM2_1991_36_2_a3
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%A I. V. Volovich
%A E. I. Zelenov
%T Spectral theory in $p$-adic quantum mechanics, and representation theory
%J Izvestiya. Mathematics 
%D 1991
%P 281-309
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a3/
%G en
%F IM2_1991_36_2_a3
V. S. Vladimirov; I. V. Volovich; E. I. Zelenov. Spectral theory in $p$-adic quantum mechanics, and representation theory. Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 281-309. http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a3/

[1] Vladimirov V. S., Volovich I. V., “$p$-adicheskaya kvantovaya mekhanika”, Dok. AN SSSR, 302:2 (1988), 320–323 | MR | Zbl

[2] Vladimirov V. S., Volovich I. V., “$p$-adic quantum mechanics”, Communications in Mathem. Phys., 123 (1989), 659–676 | DOI | MR | Zbl

[3] Volovich I. V., Number Theory as the Ultimate Physical Theory, Preprint CERN-TH. 4781/878, Geneve, 1987 | MR

[4] Zelenov E. I., “$p$-adicheskaya kvantovaya mekhanika pri $p=2$”, Teor. i matem. fizika., 80:2 (1989), 253–264 | MR

[5] Vladimirov V. S., Volovich I. V., “A vacuum state in $p$-adic quantum mechanics”, Physics Letters, B217 (1989), 411–414 | MR

[6] Vladimirov V. S., Volovich I. V., “$p$-adic Schrödinger Type Equation”, Lett. in Mathem. Physics, 18 (1989), 43–50 | DOI | MR

[7] Vladimirov V. S., “$p$-adic analysis and $p$-adic quantum mechanics”, Annals of the New-York Ac. of Sc. Symposium in Frontiers of Mathematics, N.Y., 1988

[8] Alacoque C., Ruelle Ph., Thiran E., Verstegen D., Weyers J., “Quantum mechanics on $p$-adic fields”, Physics Letters, B211 (1988), 59–63 | MR

[9] Meurice Y., Quantum mechanics with $p$-adic Numbers, Preprint CINVESTAV-FIS-52/88, Mexico, 1988 | MR

[10] Ruelle Ph., Thiran E., Verstegen D., Weyers J., Quantum mechanics on $p$-adic fields, Preprint UCL-IPT-88-21, Louvain-la-Neuve, 1988 | MR

[11] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1973 | MR | Zbl

[12] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[13] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[14] Gelfand I. M., Graev M. I., Pyatetskii-Shapiro I. I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR

[15] Vladimirov V. S., “Obobschennye funktsii nad polem $p$-adicheskikh chisel”, Uspekhi matem. nauk, 43:5 (1988), 17–53 | MR | Zbl

[16] Weil A., “Sur certaines gropes d'operateurs unitaires”, Acta Math., 111 (1964), 143–211 | DOI | MR | Zbl

[17] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnaya teoriya, Mir, M., 1966