Spectral theory in $p$-adic quantum mechanics, and representation theory
Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 281-309
Voir la notice de l'article provenant de la source Math-Net.Ru
Spectral theory is discussed for a harmonic oscillator in $p$-adic quantum mechanics. The problem of the decomposition into irreducible representations of the restriction of a projective representation of the symplectic group to a compact abelian subgroup is solved, the dimensions of the invariant subspaces are calculated, and the eigenfunctions are analyzed. Spectral problems are considered for $p$-adic pseudodifferential operators of Schrödinger type. A complete orthonormal system of eigenfunctions is constructed for the $p$-adic analog of the differentiation operator.
@article{IM2_1991_36_2_a3,
author = {V. S. Vladimirov and I. V. Volovich and E. I. Zelenov},
title = {Spectral theory in $p$-adic quantum mechanics, and representation theory},
journal = {Izvestiya. Mathematics },
pages = {281--309},
publisher = {mathdoc},
volume = {36},
number = {2},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a3/}
}
TY - JOUR AU - V. S. Vladimirov AU - I. V. Volovich AU - E. I. Zelenov TI - Spectral theory in $p$-adic quantum mechanics, and representation theory JO - Izvestiya. Mathematics PY - 1991 SP - 281 EP - 309 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a3/ LA - en ID - IM2_1991_36_2_a3 ER -
V. S. Vladimirov; I. V. Volovich; E. I. Zelenov. Spectral theory in $p$-adic quantum mechanics, and representation theory. Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 281-309. http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a3/