Kolmogorov widths of classes of periodic functions of one and several variables
Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 435-448

Voir la notice de l'article provenant de la source Math-Net.Ru

The order of Kolmogorov widths $d_N(\widetilde W_{\bar p}^{\bar\alpha},\widetilde L_q)$ are determined for the class $\widetilde W_{\bar p}^{\bar\alpha}=\bigcap\limits_{i=1}^m\widetilde W_{p^i}^{\alpha^i}$ that is the intersection of classes of periodic functions of one variable of “higher” smoothness, in the space $\widetilde L_q$ for $1$, and estimates from above for “low” smoothness, and also the order of Kolmogorov widths $d_N(\widetilde H_p^r,\widetilde L_q)$ is calculated for periodic functions of several variables in the space $\widetilde L_q$ for $1$. The estimate from below for $d_N(\widetilde H_p^r,\widetilde L_q)$ reduces to the estimate from below of the width of a finite-dimensional set whose width is determined.
@article{IM2_1991_36_2_a10,
     author = {\`E. M. Galeev},
     title = {Kolmogorov widths of classes of periodic functions of one and several variables},
     journal = {Izvestiya. Mathematics },
     pages = {435--448},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a10/}
}
TY  - JOUR
AU  - È. M. Galeev
TI  - Kolmogorov widths of classes of periodic functions of one and several variables
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 435
EP  - 448
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a10/
LA  - en
ID  - IM2_1991_36_2_a10
ER  - 
%0 Journal Article
%A È. M. Galeev
%T Kolmogorov widths of classes of periodic functions of one and several variables
%J Izvestiya. Mathematics 
%D 1991
%P 435-448
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a10/
%G en
%F IM2_1991_36_2_a10
È. M. Galeev. Kolmogorov widths of classes of periodic functions of one and several variables. Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 435-448. http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a10/