On~dilatation theory and spectral analysis of dissipative Schrodinger operators in Weyl's limit-circle case
Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 247-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

Dissipative Schrödinger operators are studied in Weyl's limit-circle case. A selfadjoint dilation and a spectral model of these operators are constructed and the characteristic function is computed. Theorems on the completeness of the eigenfunctions of the dissipative operators are proved.
@article{IM2_1991_36_2_a1,
     author = {B. P. Allakhverdiev},
     title = {On~dilatation theory and spectral analysis of dissipative {Schrodinger} operators in {Weyl's} limit-circle case},
     journal = {Izvestiya. Mathematics },
     pages = {247--262},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a1/}
}
TY  - JOUR
AU  - B. P. Allakhverdiev
TI  - On~dilatation theory and spectral analysis of dissipative Schrodinger operators in Weyl's limit-circle case
JO  - Izvestiya. Mathematics 
PY  - 1991
SP  - 247
EP  - 262
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a1/
LA  - en
ID  - IM2_1991_36_2_a1
ER  - 
%0 Journal Article
%A B. P. Allakhverdiev
%T On~dilatation theory and spectral analysis of dissipative Schrodinger operators in Weyl's limit-circle case
%J Izvestiya. Mathematics 
%D 1991
%P 247-262
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a1/
%G en
%F IM2_1991_36_2_a1
B. P. Allakhverdiev. On~dilatation theory and spectral analysis of dissipative Schrodinger operators in Weyl's limit-circle case. Izvestiya. Mathematics , Tome 36 (1991) no. 2, pp. 247-262. http://geodesic.mathdoc.fr/item/IM2_1991_36_2_a1/

[1] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[2] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, IL, M., 1960

[3] Gorbachuk V. I., Gorbachuk M. L., Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Nauk. dumka, Kiev, 1984 | MR | Zbl

[4] Sekefalvi-Nad B., Foiash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[5] Pavlov B. S., “Teoriya dilatatsii i spektralnyi analiz nesamosopryazhennykh differentsialnykh operatorov”, Tr. 7-i Zimnei Shkoly po matem. programmir. i smezhn. vopr., TsEMI AN SSSR, M., 1976, 3–69

[6] Pavlov B. S., “Ob usloviyakh otdelimosti spektralnykh komponent dissipativnogo operatora”, Izv. AN SSSR. Ser. matem., 39:1 (1975), 123–148 | MR | Zbl

[7] Pavlov B. S., “Samosopryazhennaya dilatatsiya dissipativnogo operatora Shredingera i razlozhenie po ego sobstvennym funktsiyam”, Matem. sb., 102(144):4 (1977), 511–536 | MR | Zbl

[8] Katsnelson V. E., “Ob usloviyakh bazisnosti sistemy kornevykh vektorov nekotorykh klassov operatorov”, Funkts. analiz i ego prilozh., 1:2 (1967), 39–51 | MR

[9] Rofe-Beketov F. S., “Spektralnaya matritsa i obratnaya zadacha Shturma–Liuvillya na osi $(-\infty,\infty)$”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, no. 4, Kharkov, 1967, 189–197 | MR | Zbl

[10] Everitt W. N., “On a property of $m$-coefficient of a second order linear differential equation”, J. London Math. Soc., 4 (1972), 443–457 | DOI | MR | Zbl

[11] Sultanaev Ya. T., “Ob indeksakh defekta i spektra nepoluogranichennogo operatora Shturma–Liuvillya”, Dokl. AN SSSR, 276:5 (1984), 1072–1074 | MR | Zbl