Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1991_36_1_a6, author = {D. D. Botvich and V. A. Malyshev}, title = {A proof of asymptotic completeness, uniformly in the number of particles}, journal = {Izvestiya. Mathematics }, pages = {139--153}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {1991}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1991_36_1_a6/} }
TY - JOUR AU - D. D. Botvich AU - V. A. Malyshev TI - A proof of asymptotic completeness, uniformly in the number of particles JO - Izvestiya. Mathematics PY - 1991 SP - 139 EP - 153 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1991_36_1_a6/ LA - en ID - IM2_1991_36_1_a6 ER -
D. D. Botvich; V. A. Malyshev. A proof of asymptotic completeness, uniformly in the number of particles. Izvestiya. Mathematics , Tome 36 (1991) no. 1, pp. 139-153. http://geodesic.mathdoc.fr/item/IM2_1991_36_1_a6/
[1] Faddeev L. D., “Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 69, 1963, 1–122 | MR | Zbl
[2] Iorio R., O'Carroll M., “Asymptotic completeness for multiparticle Schrodinger Hamiltonians with weak potentials”, Comm. Math. Phys., 27:2 (1972), 137–145 | DOI | MR
[3] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 3–4, Mir, M., 1982
[4] Botvich D. D., Malyshev V. A., “Unitary equivalence of temperature dynamics of ideal and locally pertubed fermigas”, Comm. Math. Phys., 91:3 (1983), 301–312 | DOI | MR | Zbl
[5] Domnenkov A. Sh., Malyshev V. A., “Example of asymptotic completeness for translation invariant infinite particle system”, Comm. Math. Phys., 117:3 (1988), 316–322
[6] Aizenstadt V. V., Malyshev V. A., “Spin interaction with an ideal fermi gas”, Journ. Stat. Phys., 48:1/2 (1987), 51–88 | DOI | MR
[7] Aizenshtadt V. V., “Unitarnaya ekvivalentnost gamiltonianov v fokovokom prostranstve”, Uspekhi matem. nauk, 39:2 (1988), 220–221
[8] Domnenkov A. Sh., “Asimptoticheskaya polnota dlya sistemy chastitsa – fermi-gaz”, Teor. i matem. fiz., 71:3 (1987), 451–456 | MR
[9] Glimm Dzh., Dzhaffe A., Matematicheskie metody kvantovoi fiziki. Podkhod s ispolzovaniem funktsionalnykh integralov, Mir, M., 1984 | MR | Zbl
[10] Khepp K., Teoriya perenormirovok, Nauka, M., 1974 | MR
[11] Fridrikhe K., Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969