Del~Pezzo surfaces with log-terminal singularities.~III
Izvestiya. Mathematics , Tome 35 (1990) no. 3, pp. 657-675

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Z$ be a del Pezzo surface with log-terminal singularities and $\sigma\colon Y\to Z$ a minimal resolution of singularities. Then the Picard number of $Y$ satisfies $\rho(Y)$, where $e$ is the maximal multiplicity of the singularities of $Z$ and $N$ a certain function of $e$. Bibliography: 18 titles.
@article{IM2_1990_35_3_a6,
     author = {V. V. Nikulin},
     title = {Del~Pezzo surfaces with log-terminal {singularities.~III}},
     journal = {Izvestiya. Mathematics },
     pages = {657--675},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a6/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - Del~Pezzo surfaces with log-terminal singularities.~III
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 657
EP  - 675
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a6/
LA  - en
ID  - IM2_1990_35_3_a6
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T Del~Pezzo surfaces with log-terminal singularities.~III
%J Izvestiya. Mathematics 
%D 1990
%P 657-675
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a6/
%G en
%F IM2_1990_35_3_a6
V. V. Nikulin. Del~Pezzo surfaces with log-terminal singularities.~III. Izvestiya. Mathematics , Tome 35 (1990) no. 3, pp. 657-675. http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a6/