Classification of surfaces of degree four having a~nonsimple singular point
Izvestiya. Mathematics , Tome 35 (1990) no. 3, pp. 607-627
Voir la notice de l'article provenant de la source Math-Net.Ru
The author obtains a classification, to within a rigid isotopy (i.e. an isotopy in the class of algebraic surfaces), of algebraic surfaces of degree four in $\mathbf Cp^3$ with isolated singularities which have at least one nonsimple singular point (i.e. a singular point different from $A_p$, $D_p$, $E_6$, $E_7$, and $E_8$).
Tables: 4.
Figures: 6.
Bibliography: 10 titles.
@article{IM2_1990_35_3_a4,
author = {A. I. Degtyarev},
title = {Classification of surfaces of degree four having a~nonsimple singular point},
journal = {Izvestiya. Mathematics },
pages = {607--627},
publisher = {mathdoc},
volume = {35},
number = {3},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a4/}
}
A. I. Degtyarev. Classification of surfaces of degree four having a~nonsimple singular point. Izvestiya. Mathematics , Tome 35 (1990) no. 3, pp. 607-627. http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a4/