Representable functors, Serre functors, and mutations
Izvestiya. Mathematics , Tome 35 (1990) no. 3, pp. 519-541
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper studies the categorical version of the concept of mutations of an exceptional set, as used in the theory of vector bundles. The basic object of study is a triangulated category with a family of subcategories satisfying the so-called admissibility condition. A natural notion arising here is that of a Serre functor, effecting a certain duality in the triangulated category.
Bibliography: 16 titles.
@article{IM2_1990_35_3_a1,
author = {A. I. Bondal and M. M. Kapranov},
title = {Representable functors, {Serre} functors, and mutations},
journal = {Izvestiya. Mathematics },
pages = {519--541},
publisher = {mathdoc},
volume = {35},
number = {3},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a1/}
}
A. I. Bondal; M. M. Kapranov. Representable functors, Serre functors, and mutations. Izvestiya. Mathematics , Tome 35 (1990) no. 3, pp. 519-541. http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a1/