Representable functors, Serre functors, and mutations
Izvestiya. Mathematics , Tome 35 (1990) no. 3, pp. 519-541.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the categorical version of the concept of mutations of an exceptional set, as used in the theory of vector bundles. The basic object of study is a triangulated category with a family of subcategories satisfying the so-called admissibility condition. A natural notion arising here is that of a Serre functor, effecting a certain duality in the triangulated category. Bibliography: 16 titles.
@article{IM2_1990_35_3_a1,
     author = {A. I. Bondal and M. M. Kapranov},
     title = {Representable functors, {Serre} functors, and mutations},
     journal = {Izvestiya. Mathematics },
     pages = {519--541},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a1/}
}
TY  - JOUR
AU  - A. I. Bondal
AU  - M. M. Kapranov
TI  - Representable functors, Serre functors, and mutations
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 519
EP  - 541
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a1/
LA  - en
ID  - IM2_1990_35_3_a1
ER  - 
%0 Journal Article
%A A. I. Bondal
%A M. M. Kapranov
%T Representable functors, Serre functors, and mutations
%J Izvestiya. Mathematics 
%D 1990
%P 519-541
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a1/
%G en
%F IM2_1990_35_3_a1
A. I. Bondal; M. M. Kapranov. Representable functors, Serre functors, and mutations. Izvestiya. Mathematics , Tome 35 (1990) no. 3, pp. 519-541. http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a1/

[1] Beilinson A. A., “Kogerentnye puchki na $\mathbf{P}^n$ i problemy lineinoi algebry”, Funkts. analiz., 12:3 (1987), 68–69 | MR

[2] Beilinson A. A., Bernstein I. N., Deligne P., Faisceaux pervers, Asterisque, 100, 1981

[3] Bernshtein I. N., Gelfand I. M., Gelfand S. I., “Algebraicheskie rassloeniya na $\mathbf{P}^n$ i zadachi lineinoi algebry”, Funkts. analiz, 12:3 (1978), 66–67 | MR

[4] Bondal A. I., “Predstavleniya assotsiativnykh algebr i kogerentnye puchki”, Izv. AN SSSR. Ser. matem., 53:1 (1989), 25–44 | MR

[5] Gelfand S. I., “Puchki na $\mathbf{P}^n$ i zadachi lineinoi algebry”, prilozhenie k russkomu izdaniyu knigi: K. Okonek, M. Shnaider, X. Shpindler, Vektornye rassloeniya na kompleksnykh proektivnykh prostranstvakh, Mir, M., 1986 | MR

[6] Gorodentsev A. L., Rudakov A. N., “Exceptional bundles on projectives spaces”, Duke Math. J., 54 (1987), 115–130 | DOI | MR | Zbl

[7] Brown E., “Cohomology theories”, Ann. Math., 75 (1962), 467–484 | DOI | MR | Zbl

[8] Hartshorne R., Residues and duality, Lect. Notes in Math., 20, 1966 | MR | Zbl

[9] Verdier J.-L., “Categories derivées”, Lect. Notes in Math., 569, 1977, 262–311 | MR | Zbl

[10] Kapranov M. M., “On the derived categories of coherent sheaves on some homogeneous spaces”, Invent. Math., 92 (1988), 479–508 | DOI | MR | Zbl

[11] Brylinsky J. L., “Transformations canoniques et transformation de Fourier”, Asterisque, 140, 1985, 3–134

[12] Happet D., “On the derived category of a finitedimensional algebra”, Comm. Math. Helv., 62 (1987), 339–389 | DOI | MR

[13] Ringel C. M., Tame algebras and integral quadratic forms, Lect. Notes in Math., 1099, 1984 | MR | Zbl

[14] Cepp Zh.-P., “Kogerentnye algebraicheskie puchki”, Rassloennye prostranstva, IL, M., 1957, 372–450

[15] Uaitkhed Dzh., Noveishie dostizheniya v teorii gomotopii, Mir, M., 1971

[16] Drezet J.-M., “Fibrés exceptionels et suite spectrale de Beilinson généralisée sur $P_2(C)$”, Math. Ann., 285 (1986), 25–48 | DOI | MR