Representable functors, Serre functors, and mutations
Izvestiya. Mathematics, Tome 35 (1990) no. 3, pp. 519-541 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies the categorical version of the concept of mutations of an exceptional set, as used in the theory of vector bundles. The basic object of study is a triangulated category with a family of subcategories satisfying the so-called admissibility condition. A natural notion arising here is that of a Serre functor, effecting a certain duality in the triangulated category. Bibliography: 16 titles.
@article{IM2_1990_35_3_a1,
     author = {A. I. Bondal and M. M. Kapranov},
     title = {Representable functors, {Serre} functors, and mutations},
     journal = {Izvestiya. Mathematics},
     pages = {519--541},
     year = {1990},
     volume = {35},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a1/}
}
TY  - JOUR
AU  - A. I. Bondal
AU  - M. M. Kapranov
TI  - Representable functors, Serre functors, and mutations
JO  - Izvestiya. Mathematics
PY  - 1990
SP  - 519
EP  - 541
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a1/
LA  - en
ID  - IM2_1990_35_3_a1
ER  - 
%0 Journal Article
%A A. I. Bondal
%A M. M. Kapranov
%T Representable functors, Serre functors, and mutations
%J Izvestiya. Mathematics
%D 1990
%P 519-541
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a1/
%G en
%F IM2_1990_35_3_a1
A. I. Bondal; M. M. Kapranov. Representable functors, Serre functors, and mutations. Izvestiya. Mathematics, Tome 35 (1990) no. 3, pp. 519-541. http://geodesic.mathdoc.fr/item/IM2_1990_35_3_a1/

[1] Beilinson A. A., “Kogerentnye puchki na $\mathbf{P}^n$ i problemy lineinoi algebry”, Funkts. analiz., 12:3 (1987), 68–69 | MR

[2] Beilinson A. A., Bernstein I. N., Deligne P., Faisceaux pervers, Asterisque, 100, 1981

[3] Bernshtein I. N., Gelfand I. M., Gelfand S. I., “Algebraicheskie rassloeniya na $\mathbf{P}^n$ i zadachi lineinoi algebry”, Funkts. analiz, 12:3 (1978), 66–67 | MR

[4] Bondal A. I., “Predstavleniya assotsiativnykh algebr i kogerentnye puchki”, Izv. AN SSSR. Ser. matem., 53:1 (1989), 25–44 | MR

[5] Gelfand S. I., “Puchki na $\mathbf{P}^n$ i zadachi lineinoi algebry”, prilozhenie k russkomu izdaniyu knigi: K. Okonek, M. Shnaider, X. Shpindler, Vektornye rassloeniya na kompleksnykh proektivnykh prostranstvakh, Mir, M., 1986 | MR

[6] Gorodentsev A. L., Rudakov A. N., “Exceptional bundles on projectives spaces”, Duke Math. J., 54 (1987), 115–130 | DOI | MR | Zbl

[7] Brown E., “Cohomology theories”, Ann. Math., 75 (1962), 467–484 | DOI | MR | Zbl

[8] Hartshorne R., Residues and duality, Lect. Notes in Math., 20, 1966 | MR | Zbl

[9] Verdier J.-L., “Categories derivées”, Lect. Notes in Math., 569, 1977, 262–311 | MR | Zbl

[10] Kapranov M. M., “On the derived categories of coherent sheaves on some homogeneous spaces”, Invent. Math., 92 (1988), 479–508 | DOI | MR | Zbl

[11] Brylinsky J. L., “Transformations canoniques et transformation de Fourier”, Asterisque, 140, 1985, 3–134

[12] Happet D., “On the derived category of a finitedimensional algebra”, Comm. Math. Helv., 62 (1987), 339–389 | DOI | MR

[13] Ringel C. M., Tame algebras and integral quadratic forms, Lect. Notes in Math., 1099, 1984 | MR | Zbl

[14] Cepp Zh.-P., “Kogerentnye algebraicheskie puchki”, Rassloennye prostranstva, IL, M., 1957, 372–450

[15] Uaitkhed Dzh., Noveishie dostizheniya v teorii gomotopii, Mir, M., 1971

[16] Drezet J.-M., “Fibrés exceptionels et suite spectrale de Beilinson généralisée sur $P_2(C)$”, Math. Ann., 285 (1986), 25–48 | DOI | MR