On the chain complex of an iterated loop space
Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 445-455.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of co-$B$-construction for a coalgebra over an operad is considered. It is shown that the singular chain complex of the $n$-fold loop space over an $n$-connected space $X$ can be expressed, using this construction, in terms of the singular chain complex of $X$. Bibliography: 5 titles.
@article{IM2_1990_35_2_a7,
     author = {V. A. Smirnov},
     title = {On the chain complex of an iterated loop space},
     journal = {Izvestiya. Mathematics },
     pages = {445--455},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a7/}
}
TY  - JOUR
AU  - V. A. Smirnov
TI  - On the chain complex of an iterated loop space
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 445
EP  - 455
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a7/
LA  - en
ID  - IM2_1990_35_2_a7
ER  - 
%0 Journal Article
%A V. A. Smirnov
%T On the chain complex of an iterated loop space
%J Izvestiya. Mathematics 
%D 1990
%P 445-455
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a7/
%G en
%F IM2_1990_35_2_a7
V. A. Smirnov. On the chain complex of an iterated loop space. Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 445-455. http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a7/

[1] Adams J. F., “On the cobar construction”, Colloque de topologie Algebrique, Louvin, 1956 | MR

[2] Milgram R. J., “Iterated loop spaces”, Annals of Mathematics, 84:3 (1966), 386–403 | DOI | MR | Zbl

[3] May J. P., The Geometry of Iterated Loop Spaces, Lecture Notes in Mathematics, 271, 1972 | MR | Zbl

[4] Khelaya L. G., “O nekotorykh tsepnykh operatsiyakh”, Soobsch. AN GSSR, 96:3 (1979), 529–532 | MR | Zbl

[5] Smirnov V. A., “Gomotopicheskaya teoriya koalgebr”, Izv. AN SSSR. Ser. matem., 49:6 (1985), 1302–1321 | MR | Zbl