On the chain complex of an iterated loop space
Izvestiya. Mathematics, Tome 35 (1990) no. 2, pp. 445-455
Cet article a éte moissonné depuis la source Math-Net.Ru
The notion of co-$B$-construction for a coalgebra over an operad is considered. It is shown that the singular chain complex of the $n$-fold loop space over an $n$-connected space $X$ can be expressed, using this construction, in terms of the singular chain complex of $X$. Bibliography: 5 titles.
@article{IM2_1990_35_2_a7,
author = {V. A. Smirnov},
title = {On the chain complex of an iterated loop space},
journal = {Izvestiya. Mathematics},
pages = {445--455},
year = {1990},
volume = {35},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a7/}
}
V. A. Smirnov. On the chain complex of an iterated loop space. Izvestiya. Mathematics, Tome 35 (1990) no. 2, pp. 445-455. http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a7/
[1] Adams J. F., “On the cobar construction”, Colloque de topologie Algebrique, Louvin, 1956 | MR
[2] Milgram R. J., “Iterated loop spaces”, Annals of Mathematics, 84:3 (1966), 386–403 | DOI | MR | Zbl
[3] May J. P., The Geometry of Iterated Loop Spaces, Lecture Notes in Mathematics, 271, 1972 | MR | Zbl
[4] Khelaya L. G., “O nekotorykh tsepnykh operatsiyakh”, Soobsch. AN GSSR, 96:3 (1979), 529–532 | MR | Zbl
[5] Smirnov V. A., “Gomotopicheskaya teoriya koalgebr”, Izv. AN SSSR. Ser. matem., 49:6 (1985), 1302–1321 | MR | Zbl