Operator invariants of tangles, and $R$-matrices
Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 411-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

Operator invariant of tangles are introduced. They generalize both representations of braid groups involving $R$-matrices and the recently introduced Jones–Conway and Kauffman polynomials of links. Bibliography: 25 titles.
@article{IM2_1990_35_2_a6,
     author = {V. G. Turaev},
     title = {Operator invariants of tangles, and $R$-matrices},
     journal = {Izvestiya. Mathematics },
     pages = {411--444},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a6/}
}
TY  - JOUR
AU  - V. G. Turaev
TI  - Operator invariants of tangles, and $R$-matrices
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 411
EP  - 444
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a6/
LA  - en
ID  - IM2_1990_35_2_a6
ER  - 
%0 Journal Article
%A V. G. Turaev
%T Operator invariants of tangles, and $R$-matrices
%J Izvestiya. Mathematics 
%D 1990
%P 411-444
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a6/
%G en
%F IM2_1990_35_2_a6
V. G. Turaev. Operator invariants of tangles, and $R$-matrices. Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 411-444. http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a6/

[1] Akutsu Y., Wadati M., “Knot Invariants and the Critical Statistical Systems”, J. Phys. Soc. Japan, 56:3 (1987), 839–84 | DOI | MR

[2] Akutsu Y., Wadati M., “Exactly Solvable Models and New Link Polynomials. I: $N$-State Vertex Models”, J. Phys. Soc. Japan, 56:9 (1987), 3039–3051 | DOI | MR | Zbl

[3] Akutsu Y., Deguchi T., Wadati M., “Exactly Solvable Models and New Link Polynomials. II: Link Polynomials for Closed $3$-Braids”, J. Phys. Soc. Japan, 56:10 (1987), 3464–3479 | DOI | MR | Zbl

[4] Baxter R. J., Exactly solved models in statistical mechanics, Acad. Press, London, 1982 | MR | Zbl

[5] Birman J. S., “Braids, links and mapping class groups”, Ann. of Math. Studies, 1976, no. 82

[6] Birman J. S., Wenzl H., Braids, link polynomials and a new algebra, Preprint, 1986 | MR

[7] Conway J. H., “An enumeration of knots and links and some of their algebraic properties”, Computational Problems in Abstract Algebra, Pergamon Press, N.Y., 1970, 329–358 | MR

[8] Drinfel'd V. G., “Quantum groups”, Zap. Nauch. Sem. LOMI, 155, 1986, 18–49 | MR

[9] Freyd P., Yetter D., Hoste J., Lickorish W. B. R., Millett K., Ocneanu A., “A new polynomial invariant of knots and links”, Bull. Amer. Math. Soc., 12:2 (1985), 239–246 | DOI | MR | Zbl

[10] Freyd P., Yetter D., Braided Compact Closed Categories with Applications to Low Dimensional Topology, Preprint, 1987 | MR

[11] Harpe P. de la, Kervaire M., Weber C., “On the Jones polynomial”, L'Ens. Math., 32 (1986), 271–335 | MR | Zbl

[12] Jimbo M., “Quantum $R$ Matrix for the Generalized Toda System”, Commun. Math. Phys., 102 (1986), 537–547 | DOI | MR | Zbl

[13] Jimbo M., “Quantum $R$ Matrix related to the generalized Toda system: an algebraic approach”, Lect. Notes in Phys., 246, 1986, 335–361 | MR

[14] Jones V. F. R., Notes on a talk in Atiyah's seminar, Preprint, 1986

[15] Jones V. F. R., “Hecke algebra representations of braid groups and link polynomials”, Ann. Math., 126:2 (1987), 335–388 | DOI | MR | Zbl

[16] Kauffman L. H., An Invariant of Regular Isotopy, Preprint, 1986

[17] Kauffman L. H., Vogel P., Link Polynomials and a Graphical Calculus, Preprint, 1987 | MR

[18] Lickorish W. B. R., Millett K., “A polynomial invariant of oriented links”, Topology, 26 (1987), 107–141 | DOI | MR | Zbl

[19] Morton H. R., Traczyk P., Knots, Skeins and Algebras, Preprint, 1987

[20] Przytycki J. H., Traczyk P., “Invariants of links of Conway type”, Kobe J. Math. (to appear) | MR

[21] Reidemeister K., Knotentheorie, Springer, 1932 | MR | Zbl

[22] Reshetikhin N. Yu., Quantized universal envelopping algebras, the Yang–Baxter equation, and invariants of links, Preprint LOMI E-4-87, 1988

[23] Takhtadzhyan L. A., Faddeev L. D., “Kvantovyi metod obratnoi zadachi i $XYZ$-model Geizenberga”, UMN, 34:5 (1979), 13–63 | MR

[24] Turaev V. G., The Yang–Baxter equation and invariants of links, Preprint LOMI E-3-87, 1987 | MR

[25] Turaev V. G., “Moduli Konveya i Kauffmana polnotoriya”, Zap. nauch. semin. LOMI, 167, 1988, 79–89 | Zbl