Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1990_35_2_a6, author = {V. G. Turaev}, title = {Operator invariants of tangles, and $R$-matrices}, journal = {Izvestiya. Mathematics }, pages = {411--444}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {1990}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a6/} }
V. G. Turaev. Operator invariants of tangles, and $R$-matrices. Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 411-444. http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a6/
[1] Akutsu Y., Wadati M., “Knot Invariants and the Critical Statistical Systems”, J. Phys. Soc. Japan, 56:3 (1987), 839–84 | DOI | MR
[2] Akutsu Y., Wadati M., “Exactly Solvable Models and New Link Polynomials. I: $N$-State Vertex Models”, J. Phys. Soc. Japan, 56:9 (1987), 3039–3051 | DOI | MR | Zbl
[3] Akutsu Y., Deguchi T., Wadati M., “Exactly Solvable Models and New Link Polynomials. II: Link Polynomials for Closed $3$-Braids”, J. Phys. Soc. Japan, 56:10 (1987), 3464–3479 | DOI | MR | Zbl
[4] Baxter R. J., Exactly solved models in statistical mechanics, Acad. Press, London, 1982 | MR | Zbl
[5] Birman J. S., “Braids, links and mapping class groups”, Ann. of Math. Studies, 1976, no. 82
[6] Birman J. S., Wenzl H., Braids, link polynomials and a new algebra, Preprint, 1986 | MR
[7] Conway J. H., “An enumeration of knots and links and some of their algebraic properties”, Computational Problems in Abstract Algebra, Pergamon Press, N.Y., 1970, 329–358 | MR
[8] Drinfel'd V. G., “Quantum groups”, Zap. Nauch. Sem. LOMI, 155, 1986, 18–49 | MR
[9] Freyd P., Yetter D., Hoste J., Lickorish W. B. R., Millett K., Ocneanu A., “A new polynomial invariant of knots and links”, Bull. Amer. Math. Soc., 12:2 (1985), 239–246 | DOI | MR | Zbl
[10] Freyd P., Yetter D., Braided Compact Closed Categories with Applications to Low Dimensional Topology, Preprint, 1987 | MR
[11] Harpe P. de la, Kervaire M., Weber C., “On the Jones polynomial”, L'Ens. Math., 32 (1986), 271–335 | MR | Zbl
[12] Jimbo M., “Quantum $R$ Matrix for the Generalized Toda System”, Commun. Math. Phys., 102 (1986), 537–547 | DOI | MR | Zbl
[13] Jimbo M., “Quantum $R$ Matrix related to the generalized Toda system: an algebraic approach”, Lect. Notes in Phys., 246, 1986, 335–361 | MR
[14] Jones V. F. R., Notes on a talk in Atiyah's seminar, Preprint, 1986
[15] Jones V. F. R., “Hecke algebra representations of braid groups and link polynomials”, Ann. Math., 126:2 (1987), 335–388 | DOI | MR | Zbl
[16] Kauffman L. H., An Invariant of Regular Isotopy, Preprint, 1986
[17] Kauffman L. H., Vogel P., Link Polynomials and a Graphical Calculus, Preprint, 1987 | MR
[18] Lickorish W. B. R., Millett K., “A polynomial invariant of oriented links”, Topology, 26 (1987), 107–141 | DOI | MR | Zbl
[19] Morton H. R., Traczyk P., Knots, Skeins and Algebras, Preprint, 1987
[20] Przytycki J. H., Traczyk P., “Invariants of links of Conway type”, Kobe J. Math. (to appear) | MR
[21] Reidemeister K., Knotentheorie, Springer, 1932 | MR | Zbl
[22] Reshetikhin N. Yu., Quantized universal envelopping algebras, the Yang–Baxter equation, and invariants of links, Preprint LOMI E-4-87, 1988
[23] Takhtadzhyan L. A., Faddeev L. D., “Kvantovyi metod obratnoi zadachi i $XYZ$-model Geizenberga”, UMN, 34:5 (1979), 13–63 | MR
[24] Turaev V. G., The Yang–Baxter equation and invariants of links, Preprint LOMI E-3-87, 1987 | MR
[25] Turaev V. G., “Moduli Konveya i Kauffmana polnotoriya”, Zap. nauch. semin. LOMI, 167, 1988, 79–89 | Zbl