The multiplicative group of a~field and hyperidentities
Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 377-391.

Voir la notice de l'article provenant de la source Math-Net.Ru

The multiplicative group of a field is characterized. By means of a hyperidentity of distributivity, the groups that can be distinguished as the multiplicative group of a field by the hyperidentity of idempotency are characterized. Bibliography: 21 titles.
@article{IM2_1990_35_2_a4,
     author = {Yu. M. Movsisyan},
     title = {The multiplicative group of a~field and hyperidentities},
     journal = {Izvestiya. Mathematics },
     pages = {377--391},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a4/}
}
TY  - JOUR
AU  - Yu. M. Movsisyan
TI  - The multiplicative group of a~field and hyperidentities
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 377
EP  - 391
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a4/
LA  - en
ID  - IM2_1990_35_2_a4
ER  - 
%0 Journal Article
%A Yu. M. Movsisyan
%T The multiplicative group of a~field and hyperidentities
%J Izvestiya. Mathematics 
%D 1990
%P 377-391
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a4/
%G en
%F IM2_1990_35_2_a4
Yu. M. Movsisyan. The multiplicative group of a~field and hyperidentities. Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 377-391. http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a4/

[1] Fuks L., Beskonechnye abelevy gruppy, t. 2, Mir, M, 1977

[2] Dicker R. M., “A set of independent axioms for a field and a condition for a group tobe the multiplicative group of a field”, Proc. London Math. Soc., 18 (1968), 114–124 | DOI | MR | Zbl

[3] Cohn P. M., “On the embedding of rings in skew fields”, Proc. London Math. Soc., 11 (1961), 511–530 | DOI | MR | Zbl

[4] May W., “Multiplicative groups of fields”, Proc. London Math. Soc., 24 (1972), 295–306 | DOI | MR | Zbl

[5] Brauer R., “On a theorem of H. Cartan”, Bull. Amer. Math. Soc., 55 (1949), 619–620 | DOI | MR | Zbl

[6] Hua L. K., “Some properties of sfields”, Proc. Nat. Acad. Sci., 35 (1949), 533–537 | DOI | MR | Zbl

[7] Schenkman E., “Some remarks on the multiplicative group of a sfield”, Proc. Amer. Math. Soc., 9:2 (1958), 231–235 | DOI | MR | Zbl

[8] Schenkman E., Scott W. R., “A generalization of the Cartan–Brauer–Hua theorem”, Proc. Amer. Math. Soc., 11:3 (1960), 396–398 | DOI | MR | Zbl

[9] Khuzurbazar M. Sh., “K teorii multiplikativnykh grupp tel”, Dokl. AN SSSR, 137:1 (1961), 42–44 | Zbl

[10] Herstein I. N., “A remark on division rings with involution”, Indian J. Pure and Appl. Math., 9:3 (1978), 267–269 | MR | Zbl

[11] Ershov Yu. L., Lavrov I. A., Taimanov A. D., Taitslin M. A., “Elementarnye teorii”, UMN, 20:4 (1965), 37–108 | MR | Zbl

[12] Kogalovskii S. R., “O multiplikativnykh polugruppakh kolets”, Dokl. AN SSSR, 140:5 (1961), 1005–1007 | MR | Zbl

[13] Sabbagh G., “How not to characterize the multiplicative groups of fields”, J. London Math. Soc., 1 (1969), 369–370 | DOI | MR | Zbl

[14] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR

[15] Skornyakov L. A., “Stokhasticheskaya algebra”, Izv. vuzov. Matematika, 1985, no. 7, 3–11 | MR | Zbl

[16] Taylor W., “Hyperidentities and hypervarieties”, Aequationes Mathematicae, 23 (1981), 30–49 | DOI | MR | Zbl

[17] Bergman G. M., “Hyperidentities of groups and semigroups”, Aequationes Mathematicae, 23 (1981), 50–65 | DOI | MR

[18] Penner P., “Hyperidentities of lattices and semilattices”, Algebra Universalis, 13 (1981), 307–314 | DOI | MR | Zbl

[19] Movsisyan Yu. M., Vvedenie v teoriyu algebr so sverkhtozhdestvami, EGU, Erevan, 1986 | MR

[20] Bruck R. H., A survey of binary systems, Springer-Verlag, Berlin, Heidelberg, Göttingen, 1958 | MR | Zbl

[21] Mann H. B., “On orthogonal latin squares”, Bull. Amer. Math. Soc., 50 (1944), 249–257 | DOI | MR | Zbl