On the classification of propositional provability logics
Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 247-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

The general notion of a modal propositional provability logic was introduced by S. N. Artëmov (1979) and A. Visser (1984). In this paper it is proved that the four infinite series of provability logics known at the present time – $\operatorname{GL}_\alpha$, $\operatorname{GL}_\beta^-$, $S_\beta$, and $D_\beta$ ($\alpha,\beta\subseteq\omega$, $\omega\setminus\beta$ finite) – include all such logics. Bibliography: 14 titles.
@article{IM2_1990_35_2_a0,
     author = {L. D. Beklemishev},
     title = {On the classification of propositional provability logics},
     journal = {Izvestiya. Mathematics },
     pages = {247--275},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a0/}
}
TY  - JOUR
AU  - L. D. Beklemishev
TI  - On the classification of propositional provability logics
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 247
EP  - 275
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a0/
LA  - en
ID  - IM2_1990_35_2_a0
ER  - 
%0 Journal Article
%A L. D. Beklemishev
%T On the classification of propositional provability logics
%J Izvestiya. Mathematics 
%D 1990
%P 247-275
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a0/
%G en
%F IM2_1990_35_2_a0
L. D. Beklemishev. On the classification of propositional provability logics. Izvestiya. Mathematics , Tome 35 (1990) no. 2, pp. 247-275. http://geodesic.mathdoc.fr/item/IM2_1990_35_2_a0/

[1] Gödel K., “Eine interpretation des intuitionistischen Aussagenkalkuls”, Ergebnisse Math. Colloq., 4 (1933), 39–4 | Zbl

[2] Feferman S., “Arithmetization of metamathematics in a general setting”, Fundam. Math., 49 (1960), 35–92 | MR | Zbl

[3] Feferman S., “Transfinitnye rekursivnye progressii aksiomaticheskikh teorii”, Matematika, 15:5 (1971), 84–139 | Zbl

[4] Solovay R. M., “Provability interpretations of model logic”, Isr. J. Math., 25 (1976), 287–304 | DOI | MR | Zbl

[5] Artëmov S. N., “Arifmeticheski polnye modalnye teorii”, Semiotika i informatika, no. 14, VINITI, M., 1979–80, 115–133 | MR

[6] Artëmov S. N., “Prilozheniya modalnoi logiki v teorii dokazatelstv”, Neklassicheskie logiki i ikh primenenie. Voprosy kibernetiki, Nauka, M., 1982, 3–22

[7] Smorinskii K., “Teoremy o nepolnote”, Spravochnaya kniga po matematicheskoi logike. T.4: Teoriya dokazatelstv i konstruktivnaya matematika, V 4-kh t., Nauka, M., 1983, 9–53

[8] Visser A., “Provability logics of recursively enumerable theories”, J. of Philos. Logic., 13 (1984), 97–11 | DOI | MR

[9] Smoryński C., Modal logic and self-reference, Springer, 1985 | MR | Zbl

[10] Artëmov S. N., “O modalnykh logikakh, aksiomatiziruyuschikh dokazuemost”, Izv. AN SSSR. Ser. matem., 49:6 (1985), 1123–1154 | MR | Zbl

[11] Goryachev S. V., “Ob interpretiruemosti nekotorykh rasshirenii arifmetiki”, Matem. zametki, 40:5 (1986), 561–571 | MR

[12] Artëmov S. N., “O lokalnoi tablichnosti propozitsionalnykh logik dokazuemosti”, Logicheskie metody postroeniya effektivnykh algoritmov, KGU, Kalinin, 1986, 9–12

[13] Dzhaparidze G. K., Modalno-logicheskie sredstva issledovaniya dokazuemosti, Dis. $\dots$ kand. filosof. nauk, MGU, M., 1986

[14] Beklemishev L. D., “Logika dokazuemosti bez interpolyatsionnogo svoistva Kreiga”, Matem. zametki, 45:6 (1989), 12–22 | MR