Time-optimal control and the trigonometric moment problem
Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 203-220.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analytic solution of a time-optimal problem for the oscillatory system $$ \dot{x}=Ax+bu,\qquad|u|\leqslant1,\quad\operatorname{rank}(b,Ab,\dots,A^{n-1}b)=n, $$ is given, where the spectrum $\sigma(A)=\{\pm ik\lambda,k=0,1,\dots,p;\lambda>0\}$. Introducing a special system of trigonometric polynomials (canonical variables) and studying Toeplitz determinants in these variables, the authors obtain equations for determining the control time, as well as the points and surfaces of switching the optimal control. The solution thus obtained is, on the other hand, the solution of a trigonometric moment problem on the smallest possible interval in the form of a function of a $(-1,1)$-moment sequence. The question of local equivalence of linear time-optimal problems is considered for systems with a one-dimensional control. Bibliography: 6 titles.
@article{IM2_1990_35_1_a9,
     author = {V. I. Korobov and G. M. Sklyar},
     title = {Time-optimal control and the trigonometric moment problem},
     journal = {Izvestiya. Mathematics },
     pages = {203--220},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a9/}
}
TY  - JOUR
AU  - V. I. Korobov
AU  - G. M. Sklyar
TI  - Time-optimal control and the trigonometric moment problem
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 203
EP  - 220
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a9/
LA  - en
ID  - IM2_1990_35_1_a9
ER  - 
%0 Journal Article
%A V. I. Korobov
%A G. M. Sklyar
%T Time-optimal control and the trigonometric moment problem
%J Izvestiya. Mathematics 
%D 1990
%P 203-220
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a9/
%G en
%F IM2_1990_35_1_a9
V. I. Korobov; G. M. Sklyar. Time-optimal control and the trigonometric moment problem. Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 203-220. http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a9/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968 | MR

[3] Markov A. L., Izbrannye trudy, Gostekhizdat, M., 1948

[4] Korobov V. I., Sklyar G. M., “Optimalnoe bystrodeistvie i stepennaya problema momentov”, Matem. sb., 134(176):10 (1987), 186–207 | MR

[5] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[6] Korobov V. I., Sklyar G. M., “Reshenie zadachi bystrodeistviya dlya kolebatelnoi sistemy”, Dokl. AN USSR. Ser. A., 1987, no. 10, 6–9 | MR | Zbl