On Wiman's theorem concerning the minimum modulus of a~function analytic in the unit disk
Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 165-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains an investigation of conditions under which an analytic function $F(z)$ represented by a Dirichlet series $$ F(z)=\sum_{n=0}^\infty a_ne^{z\lambda_n},\qquad 0=\lambda_0\lambda_n\uparrow+\infty\quad(n\to+\infty), $$ absolutely convergent in $\{z\colon\operatorname{Re}z0\}$ satisfies the relation $$ F(x+iy)=(1+o(1))a_{\nu(x)}e^{(x+iy)\lambda_{\nu(x)}} $$ uniformly with respect to $y\in\mathbf R$ as $x\to-0$ in the complement of some sufficiently small set. The results are used to derive as simple corollaries new assertions for functions analytic in the unit disk that are represented by lacunary power series. All the assertions proved in this article are best possible or close to best possible. Bibliography: 12 titles.
@article{IM2_1990_35_1_a7,
     author = {O. B. Skaskiv},
     title = {On {Wiman's} theorem concerning the minimum modulus of a~function analytic in the unit disk},
     journal = {Izvestiya. Mathematics },
     pages = {165--182},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a7/}
}
TY  - JOUR
AU  - O. B. Skaskiv
TI  - On Wiman's theorem concerning the minimum modulus of a~function analytic in the unit disk
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 165
EP  - 182
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a7/
LA  - en
ID  - IM2_1990_35_1_a7
ER  - 
%0 Journal Article
%A O. B. Skaskiv
%T On Wiman's theorem concerning the minimum modulus of a~function analytic in the unit disk
%J Izvestiya. Mathematics 
%D 1990
%P 165-182
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a7/
%G en
%F IM2_1990_35_1_a7
O. B. Skaskiv. On Wiman's theorem concerning the minimum modulus of a~function analytic in the unit disk. Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 165-182. http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a7/

[1] Wiman A., “Über der Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem grössten Betrage beigegebenen Argumente der Funktion”, Acta Math., 41 (1916), 1–28 | DOI | MR | Zbl

[2] Nicholls P. J., Sons L. R., “Minimum modulus and zeros of functions in the unit disc”, Proc. London Math. Soc., 31:1 (1975), 99–113 | DOI | MR | Zbl

[3] Erdős P., Macintyre A. J., “Integral functions with gap power series”, Proc. Edinburgh. Math Soc. (2), 10 (1953), 62–70 | MR

[4] Skaskiv O. B., “Maksimum modulya i maksimalnyi chlen tselogo ryada Dirikhle”, Dokl. AN USSR. Ser. A., 1984, no. 11, 22–24 | MR | Zbl

[5] Hayman W. K., “The local growth of power series: a survey of the Wyman–Valyron method”, Canad. Math. Bull., 17:3 (1974), 317–358 | MR | Zbl

[6] Sheremeta M. N., “Metod Vimana–Valirona dlya ryadov Dirikhle”, Ukr. matem. zhurn., 30:4 (1978), 488–497 | MR | Zbl

[7] Sheremeta M. N., “Analogi teoremy Vimana dlya ryadov Dirikhle”, Matem. sb., 110:1 (1979), 102–116 | MR | Zbl

[8] Skaskiv O. B., “O povedenii maksimalnogo chlena ryada Dirikhle, zadayuschego tseluyu funktsiyu”, Matem. zametki, 37:1 (1985), 41–47 | MR | Zbl

[9] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983, 176 pp. | MR

[10] Dagene E., “O tsentralnom pokazatele ryada Dirikhle”, Litov. matem. sb., 8:3 (1968), 504–521

[11] Fenton P. C., “The minimum modulus of gap power series”, Proc. Edinburgh. Math. Soc., 21 (1978), 49–54 | DOI | MR | Zbl

[12] Demidovich B. P., Sbornik zadach i uprazhnenii po matematicheskomu analizu, Nauka, M., 1969, 544 pp.