On some algorithmic properties of hyperbolic groups
Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 145-163

Voir la notice de l'article provenant de la source Math-Net.Ru

For hyperbolic groups the author establishes the solvability of the algorithmic problems of extracting a root of an element, determining the order of an element, membership of a cyclic subgroup, and existence of a solution of an arbitrary quadratic equation. It is proved that every hyperbolic group has a finite presentation for which the word problem can be solved by Dehn's algorithm. The concept of a hyperbolic group was introduced by M. Gromov in a 1986 preprint. Bibliography: 8 titles.
@article{IM2_1990_35_1_a6,
     author = {I. G. Lysenok},
     title = {On some algorithmic properties of hyperbolic groups},
     journal = {Izvestiya. Mathematics },
     pages = {145--163},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a6/}
}
TY  - JOUR
AU  - I. G. Lysenok
TI  - On some algorithmic properties of hyperbolic groups
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 145
EP  - 163
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a6/
LA  - en
ID  - IM2_1990_35_1_a6
ER  - 
%0 Journal Article
%A I. G. Lysenok
%T On some algorithmic properties of hyperbolic groups
%J Izvestiya. Mathematics 
%D 1990
%P 145-163
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a6/
%G en
%F IM2_1990_35_1_a6
I. G. Lysenok. On some algorithmic properties of hyperbolic groups. Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 145-163. http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a6/