On the geometry of moduli spaces of vector bundles over a~Riemann surface
Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 83-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article investigates various properties of a natural Kähler metric on the space of moduli of stable vector bundles over a compact Riemann surface, of the Narasimhan–Seshadri connection, and of the curvature form of a canonical line bundle. Bibliography: 22 titles.
@article{IM2_1990_35_1_a3,
     author = {P. G. Zograf and L. A. Takhtadzhyan},
     title = {On the geometry of moduli spaces of vector bundles over {a~Riemann} surface},
     journal = {Izvestiya. Mathematics },
     pages = {83--100},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a3/}
}
TY  - JOUR
AU  - P. G. Zograf
AU  - L. A. Takhtadzhyan
TI  - On the geometry of moduli spaces of vector bundles over a~Riemann surface
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 83
EP  - 100
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a3/
LA  - en
ID  - IM2_1990_35_1_a3
ER  - 
%0 Journal Article
%A P. G. Zograf
%A L. A. Takhtadzhyan
%T On the geometry of moduli spaces of vector bundles over a~Riemann surface
%J Izvestiya. Mathematics 
%D 1990
%P 83-100
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a3/
%G en
%F IM2_1990_35_1_a3
P. G. Zograf; L. A. Takhtadzhyan. On the geometry of moduli spaces of vector bundles over a~Riemann surface. Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 83-100. http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a3/

[1] Narasimhan M. S., Seshadri C. S., “Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math., 82:3 (1965), 540–567 | DOI | MR | Zbl

[2] Atiyah M. F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Phil. Trans. R. Soc. London, A308 (1982), 523–615 | MR

[3] Zograf P. G., Takhtadzhyan L. A., “O svyaznosti Narasimkhana–Seshadri i kelerovoi strukture prostranstva modulei golomorfnykh vektornykh rassloenii nad rimanovymi poverkhnostyami”, Funkts. analiz i ego prilozh., 20:3 (1986), 84–85 | MR | Zbl

[4] Ivanov N. V., “Proektivnye struktury, ploskie rassloeniya i kelerovy metriki na prostranstvakh modulei”, Matem. sb., 133(175):2(6) (1987), 208–222 | MR

[5] Zograf P. G., Takhtadzhyan L. A., “Ob uniformizatsii rimanovykh poverkhnostei i metrike Veilya–Petersona na prostranstvakh Teikhmyullera i Shottki”, Matem. sb., 132:3 (1987), 304–321 | MR | Zbl

[6] Kvillen D., “Determinanty operatorov Koshi–Rimana na rimanovykh poverkhnostyakh”, Funkts. analiz i ego prilozh., 19:1 (1985), 37–41 | MR

[7] Bost J.-B., “Fibrés déterminants, déterminants régularises et mesures sur les espaces de modules de courbes complexes”, Séminaire Bourbaki, no. 676, 1986–1987

[8] Bismut J.-M., Freed D., “The analysis of elliptic families, I. Metrics and connections on determinant bundles”, Comm. Math. Phys., 106 (1986), 159–176 | DOI | MR | Zbl

[9] Gillet H., Soulé C., “Direct images of hermitian holomorphic bundles”, Bull. AMS, 15:2 (1986), 209–212 | DOI | MR | Zbl

[10] Zograf P. G., Takhtadzhyan L. A., “Lokalnaya teorema ob indekse dlya semeistva $\overline\partial$-operatorov na rimanovykh poverkhnostyakh”, UMN, 42:6 (1987), 133–150 | MR | Zbl

[11] Wolpert S., “Chern forms and the Riemann tensor for the moduli space of curves”, Inv. Math., 85:1 (1986), 119–145 | DOI | MR | Zbl

[12] Zograf P. G., Takhtadzhyan L. A., O geometrii prostranstv modulei vektornykh rassloenii nad rimanovoi poverkhnostyu, Preprint R-5-87, LOMI, L., 1987 | MR

[13] Donaldson S., “A new proff of a theorem of Narasimhan and Seshadri”, J. Diff. Geometry, 18 (1983), 269–277 | MR | Zbl

[14] Shvarts A. S., “Ellipticheskie operatory v kvantovoi teorii polya”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 17, VINITI, M., 1981, 113–173

[15] Hejhal D., “The Selberg trace formula for $PSL(2,\mathbf{R})$, I”, Lect. Notes Math., 548, 1976 | MR | Zbl

[16] Kodaira K., Complex manifolds and deformation of complex structures, Springer-Verlag, N.Y., 1986 | MR | Zbl

[17] Narasimhan M. S., Seshadri C. S., “Holomorphic vector bundles on a compact Riemann surface”, Math. Ann., 155 (1964), 69–80 | DOI | MR | Zbl

[18] Narasimhan M. S., “Elliptic operators and differential geometry of moduli spaces of vector bundles on compact Riemann surfaces”, Proceedings of the International conference on functional analysis and related topics, Tokyo, 1969, 68–71 | MR

[19] Tyurin A. N., “Geometriya modulei vektornykh rassloenii”, UMN, 29:6 (1974), 59–88 | MR | Zbl

[20] Newstead P. E., “A non-existence theorem for families of stable bundles”, J. London Math. Soc., 6 (1973), 259–266 | DOI | MR | Zbl

[21] Ramanan S., “The moduli spaces of vector bundles over an algebraic curve”, Math. Ann., 200 (1973), 69–84 | DOI | MR | Zbl

[22] Atiyah M. F., Singer I. M., “The index of elliptic operators, IV”, Ann. of Math., 93 (1971), 119–138 | DOI | MR | Zbl