On the geometry of moduli spaces of vector bundles over a~Riemann surface
Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 83-100
Voir la notice de l'article provenant de la source Math-Net.Ru
This article investigates various properties of a natural Kähler metric on the space of moduli of stable vector bundles over a compact Riemann surface, of the Narasimhan–Seshadri connection, and of the curvature form of a canonical line bundle.
Bibliography: 22 titles.
@article{IM2_1990_35_1_a3,
author = {P. G. Zograf and L. A. Takhtadzhyan},
title = {On the geometry of moduli spaces of vector bundles over {a~Riemann} surface},
journal = {Izvestiya. Mathematics },
pages = {83--100},
publisher = {mathdoc},
volume = {35},
number = {1},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a3/}
}
TY - JOUR AU - P. G. Zograf AU - L. A. Takhtadzhyan TI - On the geometry of moduli spaces of vector bundles over a~Riemann surface JO - Izvestiya. Mathematics PY - 1990 SP - 83 EP - 100 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a3/ LA - en ID - IM2_1990_35_1_a3 ER -
P. G. Zograf; L. A. Takhtadzhyan. On the geometry of moduli spaces of vector bundles over a~Riemann surface. Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 83-100. http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a3/