A~function-field analog of the Mordell conjecture: a~noncompact version
Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 61-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author proves a geometric analog of Manin's theorem on curves over function fields in the noncompact complex analytic situation. The proof relies on a “theorem on domination” in which the construction of the semistable reduction of a family of noncompact curves is carried out in terms of hyperbolic complex analysis. Bibliography: 23 titles.
@article{IM2_1990_35_1_a2,
     author = {M. G. Zaidenberg},
     title = {A~function-field analog of the {Mordell} conjecture: a~noncompact version},
     journal = {Izvestiya. Mathematics },
     pages = {61--81},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a2/}
}
TY  - JOUR
AU  - M. G. Zaidenberg
TI  - A~function-field analog of the Mordell conjecture: a~noncompact version
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 61
EP  - 81
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a2/
LA  - en
ID  - IM2_1990_35_1_a2
ER  - 
%0 Journal Article
%A M. G. Zaidenberg
%T A~function-field analog of the Mordell conjecture: a~noncompact version
%J Izvestiya. Mathematics 
%D 1990
%P 61-81
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a2/
%G en
%F IM2_1990_35_1_a2
M. G. Zaidenberg. A~function-field analog of the Mordell conjecture: a~noncompact version. Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 61-81. http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a2/

[1] Lang S., “Integral points on curves”, Publ. Math. IHES, 6, 1960, 27–43 ; Matematika, 5:6 (1961), 35–53 | MR

[2] Manin Yu. I., “Ratsionalnye tochki algebraicheskikh krivykh nad funktsionalnymi polyami”, Izv. AN SSSR. Ser. matem., 27:6 (1963), 1395–1440 | MR

[3] Lang S. Hyperbolic and diophantine analysis, Bull. Amer. Math. Soc., 14:2 (1986), 159–205 | DOI | MR | Zbl

[4] Grauert H., “Mordell's Vermutung über rationale Punkte auf Algebraischen Kurven und Funktionenkörper”, Publ. Math. IHES, 25, 1965, 131–149 | MR

[5] Parshin L. N., “Algebraicheskie krivye nad funktsionalnymi polyami, 1”, Izv. AN SSSR. Ser. matem., 32:5 (1968), 1191–1218

[6] Riebesehl D., “Hyperbolische Komplex Raüme und die Vermutung von Mordell”, Math. Ann., 257:1 (1981), 99–110 | DOI | MR | Zbl

[7] Noguchi J., “A higher dimensional analogue of Mordell's conjecture over function fields”, Math. Ann., 258:2 (1981), 207–212 | DOI | MR | Zbl

[8] Noguchi J., “Hyperbolic fiber spaces and Mordell's conjecture over function fields”, Publ. RIMS. Kyoto Univ., 21:1 (1985), 27–46 | DOI | MR | Zbl

[9] Morrison L., Persson U., “The group of sections on a rational elliptic surface”, Algebraic Geometry – Open Problems (Proc. Conf. Ravello, 1982), Lecture Notes in Math., no. 997, 1983, 321–347 | MR | Zbl

[10] Kiernan P., “Hyperbolicallv imbedded spaces and the big Picard theorem”, Math. Ann., 204 (1973), 203–209 | DOI | MR | Zbl

[11] Zaidenberg M. G., “Kriterii giperbolichnosti i semeistva krivykh”, Teoriya funktsii, funkts. analiz i ikh prilozh., no. 51, Kharkov, 1989, 40–54

[12] Zaidenberg M. G., “Semeistva krivykh i giperbolichnost”, Teoriya funktsii, funkts. analiz i ikh prilozh., no. 52, Kharkov, 1989

[13] Nishino T., “Nouvelles recherches sur les fonctions entiéres de plusieurs variablescomplexes (V). Fonctions qui se réduisent aux polynomes”, J. Math. Kyoto Univ., 15:3 (1975), 527–553 | MR | Zbl

[14] Delin P., Mamford D., “Neprivodimost mnogoobraziya krivykh zadannogo roda”, Matematika, 16:3 (1972), 13–53 | Zbl

[15] Barth W., Peters C., Van de Ven A., Compact complex surfaces, Springer, Berlin, 1984 | MR | Zbl

[16] Kiernan P., “Extension of holomorphic maps”, Trans. Amer. Math. Soc., 172 (1972), 347–355 | DOI | MR

[17] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl

[18] Lejeune-Jalabert, “Arcs analytiques et resolution minimale des singularites des surfaces quasi homogenes”, Lecture Notes in Math., no. 777, 1980, 303–336 | Zbl

[19] Douady A., “Le probleme des modules pour les sous-espaces analytiques compacts d'un espace analytique doune”, Ann. Inst. Fourier, 16:1 (1966), 1–95 | MR | Zbl

[20] Imayoshi Y., “Generalizations of de Franchis theorem”, Duke Math. J., 50 (1983), 393–408 | DOI | MR | Zbl

[21] Zaidenberg M. G., Lin V. Ya., “Teoremy konechnosti dlya golomorfnykh otobrazhenii”, Sovrem. problemy matem. Fundament. napravl., 9, VINITI, M., 1986, 127–19 | MR

[22] Parshin A. N., Finiteness theorems and hyperbolic manifolds, Preprint IHES-M-86/54., 1986, 20 P

[23] Kodaira K., “O kompaktnykh analiticheskikh poverkhnostyakh”, Matematika, 6:6 (1962), 3–17 | MR