Smoothness of the moduli scheme of instanton vector bundles with~$c_1=0$, $c_2=n$ on~$P^3$
Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 233-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

The scheme $M(P^3,n)$ of moduli of mathematical instanton bundles with Chern classes $c_1=0$, $c_2=n\geqslant1$, is studied on projective space $P^3$ over the field $\mathbf C$. It is proved that $M(P^3,n)$ is a smooth equidimensional scheme of dimension $8n-3$. Bibliography: 7 titles.
@article{IM2_1990_35_1_a11,
     author = {A. S. Tikhomirov},
     title = {Smoothness of the moduli scheme of instanton vector bundles with~$c_1=0$, $c_2=n$ on~$P^3$},
     journal = {Izvestiya. Mathematics },
     pages = {233--243},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a11/}
}
TY  - JOUR
AU  - A. S. Tikhomirov
TI  - Smoothness of the moduli scheme of instanton vector bundles with~$c_1=0$, $c_2=n$ on~$P^3$
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 233
EP  - 243
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a11/
LA  - en
ID  - IM2_1990_35_1_a11
ER  - 
%0 Journal Article
%A A. S. Tikhomirov
%T Smoothness of the moduli scheme of instanton vector bundles with~$c_1=0$, $c_2=n$ on~$P^3$
%J Izvestiya. Mathematics 
%D 1990
%P 233-243
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a11/
%G en
%F IM2_1990_35_1_a11
A. S. Tikhomirov. Smoothness of the moduli scheme of instanton vector bundles with~$c_1=0$, $c_2=n$ on~$P^3$. Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 233-243. http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a11/

[1] Barth W., “Moduli of vector bundles on the projective plane”, Invent. Math., 42 (1977), 63–91 | DOI | MR | Zbl

[2] Barth W., “Some properties of stable rank-2 vector bundles on $P^n$”, Math. Ann., 226 (1977), 125–150 | DOI | MR | Zbl

[3] Eilingsrud G, Stromme S. A., “Stable rank-2 bundles on $P^3$ with $c_1=0$ and $c_2=$”, Math. Ann., 255 (1981), 123–135 | DOI | MR

[4] Hartshorne R., “Stable reflexive sheaves”, Math. Ann., 254 (1980), 121–176 | DOI | MR | Zbl

[5] Maruyama M., “Moduli of stable sheaves, II”, J. Math. Kyoto Univ., 18 (1978), 557–614 | MR | Zbl

[6] Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968

[7] Okonek K., Shneider M., Shpindler X., Vektornye rassloeniya na kompleksnykh proektivnykh prostranstvakh, Mir, M., 1984 | MR | Zbl