Smoothness of the moduli scheme of instanton vector bundles with~$c_1=0$, $c_2=n$ on~$P^3$
Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 233-243
Voir la notice de l'article provenant de la source Math-Net.Ru
The scheme $M(P^3,n)$ of moduli of mathematical instanton bundles with Chern classes $c_1=0$, $c_2=n\geqslant1$, is studied on projective space $P^3$ over the field $\mathbf C$. It is proved that $M(P^3,n)$ is a smooth equidimensional scheme of dimension $8n-3$.
Bibliography: 7 titles.
@article{IM2_1990_35_1_a11,
author = {A. S. Tikhomirov},
title = {Smoothness of the moduli scheme of instanton vector bundles with~$c_1=0$, $c_2=n$ on~$P^3$},
journal = {Izvestiya. Mathematics },
pages = {233--243},
publisher = {mathdoc},
volume = {35},
number = {1},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a11/}
}
TY - JOUR AU - A. S. Tikhomirov TI - Smoothness of the moduli scheme of instanton vector bundles with~$c_1=0$, $c_2=n$ on~$P^3$ JO - Izvestiya. Mathematics PY - 1990 SP - 233 EP - 243 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a11/ LA - en ID - IM2_1990_35_1_a11 ER -
A. S. Tikhomirov. Smoothness of the moduli scheme of instanton vector bundles with~$c_1=0$, $c_2=n$ on~$P^3$. Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 233-243. http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a11/