Extrinsic geometry of differential equations and Green's formula
Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 37-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the geometric theory of differential equations the case is considered when the equation under study is a reduction of a broader ambient equation, and the extrinsic geometry arising in this case is investigated. A mapping is constructed with kernel describing the infinitesimal symmetries of the equation under study, along with a dual mapping with kernel containing the characteristics of the conservation laws of the equation. It is shown that the equality expressing this duality in the situation arising from a system of nonlinear partial differential equations becomes the Green's formula for this system. A construction is given for the characteristic mapping that associates with each conservation law of the equation its characteristic. Bibliography: 13 titles.
@article{IM2_1990_35_1_a1,
     author = {V. V. Zharinov},
     title = {Extrinsic geometry of differential equations and {Green's} formula},
     journal = {Izvestiya. Mathematics },
     pages = {37--60},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a1/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Extrinsic geometry of differential equations and Green's formula
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 37
EP  - 60
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a1/
LA  - en
ID  - IM2_1990_35_1_a1
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Extrinsic geometry of differential equations and Green's formula
%J Izvestiya. Mathematics 
%D 1990
%P 37-60
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a1/
%G en
%F IM2_1990_35_1_a1
V. V. Zharinov. Extrinsic geometry of differential equations and Green's formula. Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 37-60. http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a1/

[1] Vladimirov V. S, Zharinov V. V., “Zamknutye formy, assotsiirovannye s lineinymi differentsialnymi operatorami”, Diff. uravn., 16:5 (1980), 845–867 | MR | Zbl

[2] Zharinov V. V., Marchuk N. G., “Formuly Grina i bilineinye zakony sokhraneniya”, Matem. zametki, 40:4 (1986), 478–483 | MR | Zbl

[3] Vladimirov V. S, Volovich I. V., “Lokalnye i nelokalnye tochki dlya nelineinykh uravnenii”, TMF, 62:1 (1985), 3–29 | MR | Zbl

[4] Zharinov V. V., “Formula Grina dlya nelineinykh sistem uravnenii v chastnykh proizvodnykh”, Dokl. AN SSSR, 246:4 (1987), 785–787 | MR

[5] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[6] Ibragimov N. X., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[7] Vinogradov A. M., “Odna spektralnaya posledovatelnost, svyazannaya s nelineinym differentsialnym uravneniem, i algebro-geometricheskie osnovaniya lagranzhevoi teorii polya so svyazyami”, Dokl. AN SSSR, 238:5 (1978), 1028–103 | MR

[8] Gisharde A., Kogomologii topologicheskikh grupp i algebr Li, Mir, M., 1984 | MR

[9] Zharinov V. V., “Zakony sokhraneniya evolyutsionnykh sistem”, TMF, 68:2 (1986), 163–171 | MR | Zbl

[10] Lax P. D., “Periodic solutions of KdV equation”, Comm. Pure Appl. Math., 28:1 (1975), 141–188 | MR | Zbl

[11] Vinogradov A. M., “The $C$-spectral sequence, Lagrangian formalism and conservation laws”, J. Math. Anal. Appl., 100:1 (1984), 1–129 | DOI | MR

[12] Olver P. J., Applications of Lie groups to differential equations, Springer-Verlag, N.Y., 1986 | MR

[13] Tsujishita T., “On variation bicomplexes associated to differential equations”, Osaka J. Math., 19 (1982), 311–363 | MR | Zbl