Extrinsic geometry of differential equations and Green's formula
Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 37-60

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the geometric theory of differential equations the case is considered when the equation under study is a reduction of a broader ambient equation, and the extrinsic geometry arising in this case is investigated. A mapping is constructed with kernel describing the infinitesimal symmetries of the equation under study, along with a dual mapping with kernel containing the characteristics of the conservation laws of the equation. It is shown that the equality expressing this duality in the situation arising from a system of nonlinear partial differential equations becomes the Green's formula for this system. A construction is given for the characteristic mapping that associates with each conservation law of the equation its characteristic. Bibliography: 13 titles.
@article{IM2_1990_35_1_a1,
     author = {V. V. Zharinov},
     title = {Extrinsic geometry of differential equations and {Green's} formula},
     journal = {Izvestiya. Mathematics },
     pages = {37--60},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a1/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Extrinsic geometry of differential equations and Green's formula
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 37
EP  - 60
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a1/
LA  - en
ID  - IM2_1990_35_1_a1
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Extrinsic geometry of differential equations and Green's formula
%J Izvestiya. Mathematics 
%D 1990
%P 37-60
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a1/
%G en
%F IM2_1990_35_1_a1
V. V. Zharinov. Extrinsic geometry of differential equations and Green's formula. Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 37-60. http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a1/