The structure and geometry of maximal sets of convergence and unbounded divergence almost everywhere of multiple Fourier series of functions in~$L_1$ equal to zero on a~given set
Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 1-35

Voir la notice de l'article provenant de la source Math-Net.Ru

The precise structure and geometry of maximal sets of convergence and unbounded divergence almost everywhere (a.e.) of Fourier series of functions in the class $L_1(T^N)$, $N\geqslant1$, $T^N[0,2\pi]^N$, and vanishing on a given measurable set $E$ is found (in the case $N\geqslant2$ this is done for both rectangular and square summation). Bibliography: 21 titles.
@article{IM2_1990_35_1_a0,
     author = {I. L. Bloshanskii},
     title = {The structure and geometry of maximal sets of convergence and unbounded divergence almost everywhere of multiple {Fourier} series of functions in~$L_1$ equal to zero on a~given set},
     journal = {Izvestiya. Mathematics },
     pages = {1--35},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a0/}
}
TY  - JOUR
AU  - I. L. Bloshanskii
TI  - The structure and geometry of maximal sets of convergence and unbounded divergence almost everywhere of multiple Fourier series of functions in~$L_1$ equal to zero on a~given set
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 1
EP  - 35
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a0/
LA  - en
ID  - IM2_1990_35_1_a0
ER  - 
%0 Journal Article
%A I. L. Bloshanskii
%T The structure and geometry of maximal sets of convergence and unbounded divergence almost everywhere of multiple Fourier series of functions in~$L_1$ equal to zero on a~given set
%J Izvestiya. Mathematics 
%D 1990
%P 1-35
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a0/
%G en
%F IM2_1990_35_1_a0
I. L. Bloshanskii. The structure and geometry of maximal sets of convergence and unbounded divergence almost everywhere of multiple Fourier series of functions in~$L_1$ equal to zero on a~given set. Izvestiya. Mathematics , Tome 35 (1990) no. 1, pp. 1-35. http://geodesic.mathdoc.fr/item/IM2_1990_35_1_a0/