On blocks of defect $0$ in finite groups
Izvestiya. Mathematics, Tome 34 (1990) no. 3, pp. 677-683
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $n\geqslant1$ be a given natural number. It is proved that a finite group $G$ has a $p$-block of defect $0$ if and only if for some $g\in G$ the number of solutions of the equation $g=[x_1,x_2]\dots[x_{2n-1},x_{2n}]$ is not divisible by $p$. A number of criteria for the existence of real characters of defect $0$ in $G$ is obtained. Bibliography: 6 titles.
@article{IM2_1990_34_3_a7,
author = {S. P. Strunkov},
title = {On blocks of defect~$0$ in finite groups},
journal = {Izvestiya. Mathematics},
pages = {677--683},
year = {1990},
volume = {34},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a7/}
}
S. P. Strunkov. On blocks of defect $0$ in finite groups. Izvestiya. Mathematics, Tome 34 (1990) no. 3, pp. 677-683. http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a7/
[1] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR
[2] Isaacs I. M., Character theory of finite groups, Acad. Press, N.Y., 1976 | MR | Zbl
[3] Bryant R. M., Kovács L. G., “A note on generalized characters”, Bull. Austral. Math. Soc., 5:2 (1971), 265–269 | DOI | MR | Zbl
[4] Feit W., The representation theory of finite groups, North Holland, Amsterdam, N.Y., Oxford, 1982 | MR | Zbl
[5] Tsushima Y., “On the blocks of defect zero”, Nagoya Math. J., 44 (1971), 57–59 | MR | Zbl
[6] Tsushima Y., “On the existence of characters of defect zero”, Osaka J. Math., 11 (1974), 417–423 | MR | Zbl