Boundedness conditions for entire functions of exponential type interior to the hyperoctant~$\mathbf R_+^n$
Izvestiya. Mathematics , Tome 34 (1990) no. 3, pp. 663-676.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(z)$ be an entire function on $\mathbf C^n$ of exponential type. This article contains an investigation of when the boundedness of $f$ on a subset dense in some sense in the positive hyperoctant $\mathbf R_+^n$ implies its boundedness on interior cones in $\mathbf R_+^n$. Bibliography: 13 titles.
@article{IM2_1990_34_3_a6,
     author = {V. N. Logvinenko},
     title = {Boundedness conditions for entire functions of exponential type interior to the hyperoctant~$\mathbf R_+^n$},
     journal = {Izvestiya. Mathematics },
     pages = {663--676},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a6/}
}
TY  - JOUR
AU  - V. N. Logvinenko
TI  - Boundedness conditions for entire functions of exponential type interior to the hyperoctant~$\mathbf R_+^n$
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 663
EP  - 676
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a6/
LA  - en
ID  - IM2_1990_34_3_a6
ER  - 
%0 Journal Article
%A V. N. Logvinenko
%T Boundedness conditions for entire functions of exponential type interior to the hyperoctant~$\mathbf R_+^n$
%J Izvestiya. Mathematics 
%D 1990
%P 663-676
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a6/
%G en
%F IM2_1990_34_3_a6
V. N. Logvinenko. Boundedness conditions for entire functions of exponential type interior to the hyperoctant~$\mathbf R_+^n$. Izvestiya. Mathematics , Tome 34 (1990) no. 3, pp. 663-676. http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a6/

[1] Cartwright M. L., “On certain integral functions of order one”, Quart. J. of Math., 7 (1936), 46–55 | DOI | Zbl

[2] Boas R. P., Schaeffer A. C., “A theorem of Cartwright”, Duke Math. J., 9:4 (1942), 879–883 | DOI | MR | Zbl

[3] Duffin R. J., Schaeffer A. C., “Power series with bounded coefficients”, Amer. J. of Math., 67 (1945), 141–154 | DOI | MR | Zbl

[4] Bernshtein S. N., “Perenesenie svoistv trigonometricheskikh polinomov na tselye funktsii konechnoi stepeni”, Izv. AN SSSR. Ser. matem., 12:5 (1948), 421–444 | MR | Zbl

[5] Akhiezer N. I., Levin B. Ya., “Ob interpolirovanii tselykh transtsendentnykh funktsii, konechnoi stepeni”, Zapiski matem. otd. fiz.-matem. f-ta KhGU i Khark. matem. ob-va, 23, 1952, 5–26

[6] Agmon S., “Functions of exponential type in an angle and singularities of Taylor series”, Trans. Amer. Math. Soc., 70 (1951), 492–509 | DOI | MR

[7] Levin B. Ya., “Subgarmonicheskie mazhoranty i ikh prilozheniya”, Tezisy dokladov Vsesoyuznoi konferentsii po teorii funktsii kompleksnogo peremennogo, FTINT AN SSSR, Kharkov, 1971, 117–120

[8] Katsnelson V. E., “Ekvivalentnye normy v prostranstvakh tselykh funktsii”, Matem. sb., 92(134):1(9) (1973), 34–54

[9] Logvinenko V. N., “Ob odnom mnogomernom obobschenii teoremy M. Kartrait”, Dokl. AN SSSR, 219:3 (1974), 546–549 | MR | Zbl

[10] Logvinenko V. N., “Teoremy tipa teoremy M. Kartrait i veschestvennye mnozhestva edinstvennosti dlya tselykh funktsii mnogikh kompleksnykh peremennykh”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 22, Kharkov, 1975, 85–100 | MR | Zbl

[11] Ronkin L. I., “Diskretnye mnozhestva edinstvennosti dlya tselykh funktsii eksponentsialnogo tipa, ogranichennykh pri veschestvennykh znacheniyakh peremennykh”, Matematicheskaya fizika i funktsionalnyi analiz, no. 5, FTINT AN USSR, Kharkov, 1974, 17–24 | MR

[12] Ronkin L. I., “O diskretnykh mnozhestvakh edinstvennosti dlya tselykh funktsii eksponentsialnogo tipa mnogikh kompleksnykh peremennykh”, Sib. matem. zhurnal, 19:1 (1978), 142–152 | MR | Zbl

[13] Berndtsson B., “Zeros of analitic functions of several variabless”, Ark. för Matem., 16:2 (1978), 251–262 | DOI | MR | Zbl