Boundedness conditions for entire functions of exponential type interior to the hyperoctant~$\mathbf R_+^n$
Izvestiya. Mathematics , Tome 34 (1990) no. 3, pp. 663-676

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(z)$ be an entire function on $\mathbf C^n$ of exponential type. This article contains an investigation of when the boundedness of $f$ on a subset dense in some sense in the positive hyperoctant $\mathbf R_+^n$ implies its boundedness on interior cones in $\mathbf R_+^n$. Bibliography: 13 titles.
@article{IM2_1990_34_3_a6,
     author = {V. N. Logvinenko},
     title = {Boundedness conditions for entire functions of exponential type interior to the hyperoctant~$\mathbf R_+^n$},
     journal = {Izvestiya. Mathematics },
     pages = {663--676},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a6/}
}
TY  - JOUR
AU  - V. N. Logvinenko
TI  - Boundedness conditions for entire functions of exponential type interior to the hyperoctant~$\mathbf R_+^n$
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 663
EP  - 676
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a6/
LA  - en
ID  - IM2_1990_34_3_a6
ER  - 
%0 Journal Article
%A V. N. Logvinenko
%T Boundedness conditions for entire functions of exponential type interior to the hyperoctant~$\mathbf R_+^n$
%J Izvestiya. Mathematics 
%D 1990
%P 663-676
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a6/
%G en
%F IM2_1990_34_3_a6
V. N. Logvinenko. Boundedness conditions for entire functions of exponential type interior to the hyperoctant~$\mathbf R_+^n$. Izvestiya. Mathematics , Tome 34 (1990) no. 3, pp. 663-676. http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a6/