Oscillation properties of differential operators and convolution operators, and some applications
Izvestiya. Mathematics , Tome 34 (1990) no. 3, pp. 609-626.

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion is obtained for the validity of Rolle's theorem on the interval for linear differential operators. The exact order is found of decrease of the Fourier coefficients of the convolution kernels guaranteeing the variation diminishing property. Applications are given to several problems of approximation theory (such as quadrature formulas, recovering, widths, trigonometric interpolation, etc.). Bibliography: 24 titles.
@article{IM2_1990_34_3_a4,
     author = {Nguy\^en Thị Thi\^eu Hoa},
     title = {Oscillation properties of differential operators and convolution operators, and some applications},
     journal = {Izvestiya. Mathematics },
     pages = {609--626},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a4/}
}
TY  - JOUR
AU  - Nguyên Thị Thiêu Hoa
TI  - Oscillation properties of differential operators and convolution operators, and some applications
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 609
EP  - 626
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a4/
LA  - en
ID  - IM2_1990_34_3_a4
ER  - 
%0 Journal Article
%A Nguyên Thị Thiêu Hoa
%T Oscillation properties of differential operators and convolution operators, and some applications
%J Izvestiya. Mathematics 
%D 1990
%P 609-626
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a4/
%G en
%F IM2_1990_34_3_a4
Nguyên Thị Thiêu Hoa. Oscillation properties of differential operators and convolution operators, and some applications. Izvestiya. Mathematics , Tome 34 (1990) no. 3, pp. 609-626. http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a4/

[1] Polya G., “Algebraiche Untersuchungen über ganze Funktionen vom Gechlechte Nul und Ein”, J. Rein u. ang. Math., 145 (1915), 224–249 | Zbl

[2] Schoenberg I. J., “On variation diminishing integral operators of the comvolution type”, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 164–169 | DOI | MR | Zbl

[3] Mairhuber J. C, Schoenberg I. J., Williamson R. E., “On variation diminishing transformations of the circle”, Rend. Circ. Mat. Palermo, 8 (1959), 241–270 | DOI | MR | Zbl

[4] Nguen Tkhi T. X., “O nailuchshikh metodakh integrirovaniya i vosstanovleniya funktsii na klassakh, zadavaemykh svertkami, ne uvelichivayuschimi ostsillyatsiyu”, UMN, 39:2 (1984), 177–178 | MR

[5] Nguen Tkhi T. X., “Nailuchshie kvadraturnye formuly i metody vosstanovleniya funktsii, opredelyaemykh yadrami, ne uvelichivayuschimi ostsillyatsiyu”, Matem. sb., 130:1(5) (1986), 105–119 | MR | Zbl

[6] Nguen Tkhi T. X., “Teorema Rollya dlya differentsialnykh operatorov i nekotorye ekstremalnye zadachi teorii priblizhenii”, Dokl. AN SSSR, 295:6 (1987), 1313–1318

[7] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1979 | MR

[8] Oskolkov K. I., “Ob optimalnosti kvadraturnoi formuly s ravnootstoyaschimi uzlami na klassakh periodicheskikh funktsii”, Dokl. AN SSSR, 249:1 (1979), 49–52 | MR

[9] Chakhkiev M. A., “Ob optimalnosti ravnootstoyaschikh uzlov”, Dokl. AN SSSR, 264:4 (1982), 836–839 | MR

[10] Babenko V. F., Grankina T. A., “O nailuchshikh kvadraturnykh formulakh na klassakh svertok s $O(M,\Delta)$-yadrami”, Issledovanie po sovremennym problemam summirovaniya i priblizheniya funktsii i ikh prilozheniyam, Sb. nauch. trudov, DGU, Dnepropetrovsk, 1982, 6–13

[11] Tikhomirov V. M., Boyanov B. D., “O nekotorykh vypuklykh zadachakh teorii priblizhenii”, Serdika B'lgarsko matem. spis., 5 (1979), 83–96 | MR | Zbl

[12] Boyanov B. D., Optimalno v'zstnovyavanie na funktsii i funktsionali, Dis. $\dots$ dokt. matem. nauk, Sofiiskii un-t, Sofiya, 1980

[13] Pinkus A., $n$-width in approximation theory, Springer-Verlag, N.Y., 1985

[14] Volodina I. N., “Exact value of widths of a certain class of solutions of linear differential equations”, Analysis Mathematica, 11 (1985), 85–92 | DOI | MR | Zbl

[15] Telyakovskii S. A., Tikhomirov V. M., “Teoriya priblizhenii”, V kn.: A. N. Kolmogorov, Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1985, 382–386 | MR

[16] Nguen Tkhi T. X., “Ob odnoi ekstremalnoi zadache dlya klassov svertok, ne uvelichivayuschikh ostsillyatsiyu”, Vest. Mosk. un-ta. Ser. 1, 1982, no. 5, 3–7 | MR

[17] Polia G., Sege G., Zadachi i teoremy iz analiza, Nauka, M., 1978

[18] Dzyadyk V. K., “O nailuchshem priblizhenii na klassakh periodicheskikh funktsii, opredelyaemykh integralami ot lineinoi kombinatsii absolyutno monotonnykh yader”, Matem. zametki, 16:5 (1974), 691–701 | Zbl

[19] Krein M. G., “K teorii nailuchshego priblizheniya periodicheskikh funktsii”, Dokl. AN SSSR, 18 (1938), 245–249 | Zbl

[20] Nguen Tkhi T. X., Nailuchshie kvadraturnye formuly i metody vosstanovleniya na klassakh funktsii, zadavaemykh svertkami, ne uvelichivayuschimi ostsillyatsiyu, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1985

[21] Polya G., Schoenberg I. J., “Remarks on de la Vallée Poussin means and convex conformal maps of the circle”, Pacif. J. Math., 8, 295–334 | MR | Zbl

[22] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[23] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[24] Karlin S., Total positivity, Stanford University Press, Stanford, 1968 | MR