Polynomial integrals of Hamiltonian systems with exponential interaction
Izvestiya. Mathematics, Tome 34 (1990) no. 3, pp. 555-574 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem on the complete integrability of Hamiltonian systems with exponential interaction is considered. These systems include, in particular, Toda chains and their generalizations. Conditions for the existence of a complete set of independent polynomial integrals are found. A complete classification of integrable systems is given by means of Dynkin diagrams. Certain new integrable chains are indicated. Bibliography: 20 titles.
@article{IM2_1990_34_3_a2,
     author = {V. V. Kozlov and D. V. Treschev},
     title = {Polynomial integrals of {Hamiltonian} systems with exponential interaction},
     journal = {Izvestiya. Mathematics},
     pages = {555--574},
     year = {1990},
     volume = {34},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a2/}
}
TY  - JOUR
AU  - V. V. Kozlov
AU  - D. V. Treschev
TI  - Polynomial integrals of Hamiltonian systems with exponential interaction
JO  - Izvestiya. Mathematics
PY  - 1990
SP  - 555
EP  - 574
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a2/
LA  - en
ID  - IM2_1990_34_3_a2
ER  - 
%0 Journal Article
%A V. V. Kozlov
%A D. V. Treschev
%T Polynomial integrals of Hamiltonian systems with exponential interaction
%J Izvestiya. Mathematics
%D 1990
%P 555-574
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a2/
%G en
%F IM2_1990_34_3_a2
V. V. Kozlov; D. V. Treschev. Polynomial integrals of Hamiltonian systems with exponential interaction. Izvestiya. Mathematics, Tome 34 (1990) no. 3, pp. 555-574. http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a2/

[1] Toda M., Teoriya nelineinykh reshetok, Mir, M., 1984 | MR | Zbl

[2] Bogoyavlenskii O. I., Metody kachestvennoi teorii dinamicheskikh sistem v astrodinamike i gazovoi dinamike, Nauka, M., 1980 | MR | Zbl

[3] Henon M., “Integrals of the Toda lattice”, Phys. Rev. B, 9 (1974), 1921–1923 | DOI | MR | Zbl

[4] Flaschka H., “The Toda Lattice, II. Existence of integrals”, Phys. Rev. B, 9 (1974), 1924–1925 | DOI | MR | Zbl

[5] Manakov S. V., “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, ZhETF, 67:2 (1974), 543–555 | MR

[6] Bogoyavlensky O. I., “On perturbations of the periodic Toda lattices”, Comm. Math. Phys., 51 (1976), 201–209 | DOI | MR

[7] Olshanetsky M., Perelomov A., “Explicit solutions of classical generalized Toda models”, Invent. Math., 54:3 (1979), 261–269 | DOI | MR | Zbl

[8] Kostant B., “The solution of a generalized Toda lattice and representation theory”, Adv. in Math., 34:3 (1979), 195–338 | DOI | MR | Zbl

[9] Sklyanin E. K., Boundary conditions for integrable quantum systems, Preprint, LOMI, L., 1986 | MR

[10] Adler M., van Moerbeke P., “Kowalewski's Asymptotic Method, Kac–Moody Lie Algebras and Regularization”, Comm. Math. Phys., 83:1 (1982), 83–106 | DOI | MR | Zbl

[11] Dvizhenie tverdogo tela vokrug nepodvizhnoi tochki, Sb., posvyaschennyi pamyati S. V. Kovalevskoi, AN SSSR, M., L., 1940

[12] Birkgof Dzh. D., Dinamicheskie sistemy, Gostekhizdat, M., L., 1941

[13] Serr Zh.-P., Algebry Li i gruppy Li, Mir, M., 1969 | MR | Zbl

[14] Burbaki N., Gruppy i algebry Li, Mir, M., 1972 | MR | Zbl

[15] Helgason S., Differential geometry, Lie groups and symmetric spaces, Academic Press, N.Y., 1978 | MR | Zbl

[16] Adler M., van Moerbeke P., “Completely Integrable Systems, Euclidean Lie Algebras and Curves”, Adv. Math., 38 (1980), 267–317 | DOI | MR | Zbl

[17] Berzhe M., Geometriya, Mir, M., 1984 | MR | Zbl | Zbl

[18] Kozlov V. V., “K teorii vozmuschenii gamiltonovykh sistem s nekompaktnymi invariantnymi poverkhnostyami”, Vestn. Mosk. un-ta. Ser. matem., mekhan., 1988, no. 2, 55–61 | MR | Zbl

[19] Puankare A., “Novye metody nebesnoi mekhaniki”, Izbrannye trudy, t. I, Nauka, M., 1971

[20] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, t. 1, Fizmatgiz, M., 1963