On the topological and metric types of surfaces regularly covering a~closed surface
Izvestiya. Mathematics , Tome 34 (1990) no. 3, pp. 517-553.

Voir la notice de l'article provenant de la source Math-Net.Ru

A description is given of the topological types (of which there are six) of noncompact surfaces that can cover a closed surface in a regular fashion. For each of the six topological types, a computation is made of the number of equimorphic types of such surfaces that are equipped with the structure of a Riemannian $2$-manifold regularly covering a closed Riemannian $2$-manifold. Bibliography: 34 titles.
@article{IM2_1990_34_3_a1,
     author = {R. I. Grigorchuk},
     title = {On the topological and metric types of surfaces regularly covering a~closed surface},
     journal = {Izvestiya. Mathematics },
     pages = {517--553},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a1/}
}
TY  - JOUR
AU  - R. I. Grigorchuk
TI  - On the topological and metric types of surfaces regularly covering a~closed surface
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 517
EP  - 553
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a1/
LA  - en
ID  - IM2_1990_34_3_a1
ER  - 
%0 Journal Article
%A R. I. Grigorchuk
%T On the topological and metric types of surfaces regularly covering a~closed surface
%J Izvestiya. Mathematics 
%D 1990
%P 517-553
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a1/
%G en
%F IM2_1990_34_3_a1
R. I. Grigorchuk. On the topological and metric types of surfaces regularly covering a~closed surface. Izvestiya. Mathematics , Tome 34 (1990) no. 3, pp. 517-553. http://geodesic.mathdoc.fr/item/IM2_1990_34_3_a1/

[1] Efremovich V. A., “Geometriya blizosti rimanovykh mnogoobrazii”, UMN, 8:5 (1953), 189–191

[2] Mostov G. D., “Kvazikonformnye otobrazheniya v $n$-mernom prostranstve i zhestkost giperbolicheskikh prostranstvennykh form”, Matematika, 16:5 (1972), 105–157 | Zbl

[3] Sullivan D., On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Ann. of Math. Studies, 97, Princeton Univ. Press, 1981 | MR

[4] Shvarts A. S., “Ob'emnyi invariant nakrytii”, Dokl. AN SSSR, 105:1 (1955), 32–34 | MR | Zbl

[5] Milnor J., “A note on curvature and fundamental group”, J. Diff. Geom., 2 (1968), 1–7 | MR | Zbl

[6] Wolf J., “Growth of finitely generated solvable groups and curvature of Riemannian manifolds”, J. Diff. Geometry, 2 (1968), 421–446 | MR | Zbl

[7] Plante J. F., “Foliations with measure preserving holonomy”, Annals of Mathematics, 102:2 (1975), 327–361 | DOI | MR | Zbl

[8] Hector G., “Leaves whose growth is neither exponential nor polynomial”, Topology, 16 (1977), 451–459 | DOI | MR

[9] Phillips A., Sullivan D., “Geometry of leaves”, Topology, 20 (1981), 209–218 | DOI | MR | Zbl

[10] Springer G., Vvedenie v teoriyu rimanovykh poverkhnostei, IL., M., 1960 | MR

[11] Varopoulos N., “Brownian motion and transient groups”, Ann. Inst. Fourier, 33:2 (1983), 241–261 | MR | Zbl

[12] Kaimanovich V. A., “Brounovskoe dvizhenie i garmonicheskie funktsii na nakryvayuschikh mnogoobraziyakh. Entropiinyi podkhod”, Dokl. AN SSSR, 288:5 (1986), 1045–1049 | MR | Zbl

[13] Stoilov S., Teoriya funktsii kompleksnogo peremennogo, t. 2, IL., M., 1962

[14] Grinlif F., Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1973

[15] Brooks R., “Amenabilitv and the Spectrum of the Laplacian”, Bull. Amer. Soc., 6:1 (1982), 87–89 | DOI | MR | Zbl

[16] Grigorchuk R. I., “Stepeni rosta konechno-porozhdennykh grupp i teoriya invariantnykh srednikh”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 939–985 | MR

[17] Alfors L., Preobrazovanie Mebiusa v mnogomernom prostranstve, Mir, M., 1986 | MR

[18] Massi U., Stollings D., Algebraicheskaya topologiya, Mir, M., 1977 | MR | Zbl

[19] Krushkal S. L., Apanasov B. N., Gusevskii N. A., Kleinovy gruppy i uniformizatsiya, Nauka, Novosibirsk, 1981

[20] Ahlfors L. V., Sario L., Reimann surfaces, Princeton University Press, Princeton, N.Y., 1960 | MR

[21] Richards I., “On the classification of noncompact surfaces”, Trans. Amer. Math. Soc., 106 (1963), 259–269 | DOI | MR | Zbl

[22] Hopf H., “Enden offener Räume und unendliche diskontinuierliche Gruppen”, Comm. Math. Helv., 15 (1943), 27–32 | DOI | MR

[23] Freudenthal H., “Über die Enden diskreter Räume und Gruppen”, Comm. Math. Helv., 17 (1945), 1–38 | DOI | MR | Zbl

[24] Stallings J. R., “On torsion-free groups with infinetely many ends”, Ann. Math., 88 (1968), 312–334 | DOI | MR | Zbl

[25] Cohen D. E., Groups of Cohomological Dimension One, Lecture Notes in Mathematics, 245, Springer, Berlin, Heidelberg, New York, 1972 | MR | Zbl

[26] Gelfand I. M., Graev M. I., Pyatetskii-Shapiro I. I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR

[27] Maskit B., “A theorem on planar covering surfaces with applications to $3$-manifolds”, Ann. of Math., 81:2 (1965), 342–355 | DOI | MR

[28] Grigorchuk R. I., “K probleme Bernsaida o periodicheskikh gruppakh”, Funkts. analiz i ego prilozh., 14:1 (1980), 53–54 | MR | Zbl

[29] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[30] Milnor J., “Growth of finitely generated solvable groups”, J. Diff. Geometry, 2:4 (1968), 447–449 | MR | Zbl

[31] Bass H., “The degree of polynomial growth of finitely generated nilpotent groups”, Proc. London. Math. Soc., 25:4 (1972), 603–614 | DOI | MR | Zbl

[32] Milnor J., “Problem 5603”, Amer. Math. Monthly, 75:6 (1968), 685–686 | DOI | MR

[33] Maskit B., “The conformal group of a plane domain”, Amer. J. Math., 90:3 (1968), 718–722 | DOI | MR | Zbl

[34] Maskit B., “Uniformisation of Riemann surfaces”, Contribution to Analysis, Academic Press, N.Y., London, 1974, 293–312 | MR