The structure of models and a~decidability criterion for complete theories of finite-dimensional algebras
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 389-407

Voir la notice de l'article provenant de la source Math-Net.Ru

The author gives an algebraic description of models of the theory $\operatorname{Th}(R)$ and a criterion for its decidability for an arbitrary (not necessarily associative, and possibly without an identity) finite-dimensional $k$-algebra over a field $k$ of arbitrary characteristic. This description is based on the solution of the following purely algebraic problem: how completely can the structure of a $k$-module $R$ be recovered, knowing only the ring operations of $R$? Bibliography: 20 titles.
@article{IM2_1990_34_2_a8,
     author = {A. G. Myasnikov},
     title = {The structure of models and a~decidability criterion for complete theories of finite-dimensional algebras},
     journal = {Izvestiya. Mathematics },
     pages = {389--407},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a8/}
}
TY  - JOUR
AU  - A. G. Myasnikov
TI  - The structure of models and a~decidability criterion for complete theories of finite-dimensional algebras
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 389
EP  - 407
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a8/
LA  - en
ID  - IM2_1990_34_2_a8
ER  - 
%0 Journal Article
%A A. G. Myasnikov
%T The structure of models and a~decidability criterion for complete theories of finite-dimensional algebras
%J Izvestiya. Mathematics 
%D 1990
%P 389-407
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a8/
%G en
%F IM2_1990_34_2_a8
A. G. Myasnikov. The structure of models and a~decidability criterion for complete theories of finite-dimensional algebras. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 389-407. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a8/