On the problem of periodic solutions of operator differential inclusions
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 317-335

Voir la notice de l'article provenant de la source Math-Net.Ru

Geometric methods of studying the problem of periodic solutions of differential inclusions are developed, and the notion of rotation of the vector field generated by a multivalued operator of parabolic type is introduced. Properties of the rotation are established, and applications to existence theorems for periodic solutions are given. Variants of the relationship principle are proved, as well as Bogolyubov's second theorem for operator differential inclusions. Possible applications are connected with the mechanics of viscoplastic media, extremal problems, and the theory of differential equations with deviating argument. Bibliography: 19 titles.
@article{IM2_1990_34_2_a4,
     author = {V. S. Klimov},
     title = {On the problem of periodic solutions of operator differential inclusions},
     journal = {Izvestiya. Mathematics },
     pages = {317--335},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a4/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - On the problem of periodic solutions of operator differential inclusions
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 317
EP  - 335
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a4/
LA  - en
ID  - IM2_1990_34_2_a4
ER  - 
%0 Journal Article
%A V. S. Klimov
%T On the problem of periodic solutions of operator differential inclusions
%J Izvestiya. Mathematics 
%D 1990
%P 317-335
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a4/
%G en
%F IM2_1990_34_2_a4
V. S. Klimov. On the problem of periodic solutions of operator differential inclusions. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 317-335. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a4/