On the problem of periodic solutions of operator differential inclusions
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 317-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

Geometric methods of studying the problem of periodic solutions of differential inclusions are developed, and the notion of rotation of the vector field generated by a multivalued operator of parabolic type is introduced. Properties of the rotation are established, and applications to existence theorems for periodic solutions are given. Variants of the relationship principle are proved, as well as Bogolyubov's second theorem for operator differential inclusions. Possible applications are connected with the mechanics of viscoplastic media, extremal problems, and the theory of differential equations with deviating argument. Bibliography: 19 titles.
@article{IM2_1990_34_2_a4,
     author = {V. S. Klimov},
     title = {On the problem of periodic solutions of operator differential inclusions},
     journal = {Izvestiya. Mathematics },
     pages = {317--335},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a4/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - On the problem of periodic solutions of operator differential inclusions
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 317
EP  - 335
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a4/
LA  - en
ID  - IM2_1990_34_2_a4
ER  - 
%0 Journal Article
%A V. S. Klimov
%T On the problem of periodic solutions of operator differential inclusions
%J Izvestiya. Mathematics 
%D 1990
%P 317-335
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a4/
%G en
%F IM2_1990_34_2_a4
V. S. Klimov. On the problem of periodic solutions of operator differential inclusions. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 317-335. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a4/

[1] Gaevskii G., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[2] Danford N., Shvarts Dzh., Lineinye operatory, t. 1, IL., M., 1962

[3] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[4] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (1980), 59–126 | MR | Zbl

[5] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[6] Pokhozhaev S. I., “O razreshimosti nelineinykh uravnenii s nechetnymi operatorami”, Funkts. analiz i ego prilozh., 1:3 (1967), 66–63 | MR

[7] Browder F. E., “Nonlinear eigenvalue problems and Galerkin approximations”, Bull. Amer. Math. Soc., 74:4 (1968), 651–656 | DOI | MR | Zbl

[8] Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Nauk. dumka, Kiev, 1973 | MR

[9] Skrypnik I. V., “Razreshimost i svoistva reshenii nelineinykh ellipticheskikh uravnenii”, Sovr. probl. matem., 9, VINITI AN SSSR, 1976, 131–254

[10] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[11] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[12] Levin V. L., Vypuklyi analiz v prostranstvakh izmerimykh funktsii i ego primenenie v matematike i ekonomike, Nauka, M., 1985 | MR

[13] Mosolov P. P., Myasnikov V. P., Mekhanika zhestkoplasticheskikh sred, Nauka, M., 1981 | MR | Zbl

[14] Lions Zh. L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[15] Dybov G. P., “Vvedenie vrascheniya dlya odnogo klassa mnogoznachnykh operatorov”, Kraevye zadachi dlya uravnenii v chastnykh proizvodnykh, Nauk. dumka, Kiev, 1978, 57–60 | MR

[16] Klimov V. S., “K teorii variatsionnykh neravenstv”, Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, Yaroslavl, 1982, 109–11 | MR

[17] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, M., 1963 | MR

[18] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Mnogoznachnye otobrazheniya”, Itogi nauki i tekhniki. Matematicheskii analiz, 19, 127–230 | MR | Zbl

[19] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR