Factorization of almost periodic matrix-valued functions and the Noether theory for certain classes of equations of convolution type
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 281-316

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors study $n$- and $d$-normality and compute the index of systems of singular integral equations with a semi-almost periodic matrix-valued coefficient $G$, as well as the index of operators of convolution type on the half-line and a finite interval converging to it. At the base of the investigation lies factorization with almost periodic factors of matrix-valued functions describing the asymptotics of $G$ at $\pm\infty$. Bibliography: 38 titles.
@article{IM2_1990_34_2_a3,
     author = {Yu. I. Karlovich and I. M. Spitkovsky},
     title = {Factorization of almost periodic matrix-valued functions and the {Noether} theory for certain classes of equations of convolution type},
     journal = {Izvestiya. Mathematics },
     pages = {281--316},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a3/}
}
TY  - JOUR
AU  - Yu. I. Karlovich
AU  - I. M. Spitkovsky
TI  - Factorization of almost periodic matrix-valued functions and the Noether theory for certain classes of equations of convolution type
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 281
EP  - 316
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a3/
LA  - en
ID  - IM2_1990_34_2_a3
ER  - 
%0 Journal Article
%A Yu. I. Karlovich
%A I. M. Spitkovsky
%T Factorization of almost periodic matrix-valued functions and the Noether theory for certain classes of equations of convolution type
%J Izvestiya. Mathematics 
%D 1990
%P 281-316
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a3/
%G en
%F IM2_1990_34_2_a3
Yu. I. Karlovich; I. M. Spitkovsky. Factorization of almost periodic matrix-valued functions and the Noether theory for certain classes of equations of convolution type. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 281-316. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a3/