On the asymptotics of the solution of a~problem with a~small parameter
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 261-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem $\partial_tu+\partial_x\varphi(u)=\varepsilon\partial_x^2u$, $u(x,t_0)=\psi(x)$, is considered, where $\varphi,\psi\in C^\infty$, $\varphi''(u)>0$, $0\leqslant\varepsilon\ll1$. It is assumed that for $\varepsilon=0$ the problem has a generalized solution with one smooth line of discontinuity, so that this line, modeling a shock wave, appears within the strip $\Omega=\{t_0\leqslant t\leqslant T\}$. The asymptotics of a solution, uniform in $\Omega$ up to any degree in $\varepsilon$, is constructed and justified. Bibliography: 18 titles.
@article{IM2_1990_34_2_a2,
     author = {A. M. Il'in},
     title = {On the asymptotics of the solution of a~problem with a~small parameter},
     journal = {Izvestiya. Mathematics },
     pages = {261--279},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a2/}
}
TY  - JOUR
AU  - A. M. Il'in
TI  - On the asymptotics of the solution of a~problem with a~small parameter
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 261
EP  - 279
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a2/
LA  - en
ID  - IM2_1990_34_2_a2
ER  - 
%0 Journal Article
%A A. M. Il'in
%T On the asymptotics of the solution of a~problem with a~small parameter
%J Izvestiya. Mathematics 
%D 1990
%P 261-279
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a2/
%G en
%F IM2_1990_34_2_a2
A. M. Il'in. On the asymptotics of the solution of a~problem with a~small parameter. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 261-279. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a2/

[1] Oleinik O. A., “Razryvnye resheniya nelineinykh differentsialnykh uravnenii”, UMN, 12:3 (1957), 3–73 | MR

[2] Bakhvalov N. S., “Ob asimptotike pri malykh $\varepsilon$ resheniya uravneniya $u_t+(\varphi(u))_x=\varepsilon u_{xx}$,sootvetstvuyuschego volne razmnozheniya”, ZhVM i MF, 6:3 (1966), 521–526

[3] Ilin A. M., Nesterova T. N., “Asimptotika resheniya zadachi Koshi dlya odnogo kvazilineinogo uravneniya s malym parametrom”, Dokl. AN SSSR, 240:1 (1978), 11–13 | MR

[4] Pryazhinskii V. I., Sushko V. G., “Asimptotika po malomu parametru nekotorykh reshenii zadachi Koshi dlya odnogo kvazilineinogo parabolicheskogo uravneniya”, Dokl. AN SSSR, 247:2 (1979), 283–285 | MR | Zbl

[5] Sushko V. G., Lapshin E. A., “Asimptoticheskie razlozheniya reshenii nekotorykh zadach, svyazannykh s nelineinoi akustikoi”, Vzaimodeistvie odnomernykh voln v sredakh bez dispersii, MGU, M., 1983, 118–151

[6] Bogayevsky V. N., Povzner A. Ya., “On one-dimension shock waves”, International Journal of Non-Linear Mechanics, 13 (1978), 337–369 | DOI | MR

[7] Nesterova T. N., “Ob asimptotike resheniya uravneniya Byurgersa v okrestnosti sliyaniya dvukh linii razryva”, Differentsialnye uravneniya s malym parametrom, UNTs AN SSSR, Sverdlovsk, 1980, 66–86 | MR

[8] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977, 622 pp.

[9] Ilin A. M., “Zadacha Koshi dlya odnogo kvazilineinogo parabolicheskogo uravneniya s malym parametrom”, Dokl. AN SSSR, 283:3 (1985), 530–534 | MR

[10] Hopf E., “The partial differential equation $u_t+u u_x=\mu u_{xx}$”, Comm. Pure Appl. Math., 3:3 (1950), 201–230 | DOI | MR | Zbl

[11] Poston G., Styuart I., Teoriya katastrof i ee prilozheniya, Mir, M., 1980, 607 pp. | MR | Zbl

[12] Pearcey T., “The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic”, Philos. Mag., 37 (1946), 311–317 | MR

[13] Florin V. A., “Nekotorye prosteishie nelineinye zadachi konsolidatsii vodonasyschennoi zemlyanoi sredy”, Izv. AN SSSR. OTN., 1948, no. 9, 1389–1402 | MR

[14] Thomas H. C., “Heterogeneous ion exchange in a flowing system”, Journal Am. Chem. Soc., 66:10 (1944), 1664–1666 | DOI

[15] Maslov V. P., Omelyanov G. A., “Asimptoticheskie solitonoobraznye resheniya uravnenii s maloi dispersiei”, UMN, 36:3 (1981), 63–126 | MR | Zbl

[16] Maslov V. P., Omelyanov G. A., Tsupin V. A., “Asimptotika nekotorykh differentsialnykh, psevdodifferentsialnykh uravnenii i dinamicheskikh sistem pri maloi dispersii”, Matem. sb., 122:2 (1983), 197–219 | MR

[17] Dobrokhotov S. Yu., Maslov V. P., “Multiphase asymptotics of non-linear partial differential equations with a small parameter”, Sov. Sci. Rev., 3, Harwood Acad. Publishers. OVP., N.Y., 1982, 221–311 | MR

[18] Van-Daik M., Metody vozmuschenii v mekhanizme zhidkosti, Mir, M., 1967, 310 pp.