On the asymptotics of the solution of a~problem with a~small parameter
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 261-279
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem $\partial_tu+\partial_x\varphi(u)=\varepsilon\partial_x^2u$, $u(x,t_0)=\psi(x)$, is considered, where $\varphi,\psi\in C^\infty$, $\varphi''(u)>0$, $0\leqslant\varepsilon\ll1$. It is assumed that for $\varepsilon=0$ the problem has a generalized solution with one smooth line of discontinuity, so that this line, modeling a shock wave, appears within the strip $\Omega=\{t_0\leqslant t\leqslant T\}$. The asymptotics of a solution, uniform in $\Omega$ up to any degree in $\varepsilon$, is constructed and justified.
Bibliography: 18 titles.
@article{IM2_1990_34_2_a2,
author = {A. M. Il'in},
title = {On the asymptotics of the solution of a~problem with a~small parameter},
journal = {Izvestiya. Mathematics },
pages = {261--279},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a2/}
}
A. M. Il'in. On the asymptotics of the solution of a~problem with a~small parameter. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 261-279. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a2/