On the asymptotics of the solution of a~problem with a~small parameter
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 261-279

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem $\partial_tu+\partial_x\varphi(u)=\varepsilon\partial_x^2u$, $u(x,t_0)=\psi(x)$, is considered, where $\varphi,\psi\in C^\infty$, $\varphi''(u)>0$, $0\leqslant\varepsilon\ll1$. It is assumed that for $\varepsilon=0$ the problem has a generalized solution with one smooth line of discontinuity, so that this line, modeling a shock wave, appears within the strip $\Omega=\{t_0\leqslant t\leqslant T\}$. The asymptotics of a solution, uniform in $\Omega$ up to any degree in $\varepsilon$, is constructed and justified. Bibliography: 18 titles.
@article{IM2_1990_34_2_a2,
     author = {A. M. Il'in},
     title = {On the asymptotics of the solution of a~problem with a~small parameter},
     journal = {Izvestiya. Mathematics },
     pages = {261--279},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a2/}
}
TY  - JOUR
AU  - A. M. Il'in
TI  - On the asymptotics of the solution of a~problem with a~small parameter
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 261
EP  - 279
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a2/
LA  - en
ID  - IM2_1990_34_2_a2
ER  - 
%0 Journal Article
%A A. M. Il'in
%T On the asymptotics of the solution of a~problem with a~small parameter
%J Izvestiya. Mathematics 
%D 1990
%P 261-279
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a2/
%G en
%F IM2_1990_34_2_a2
A. M. Il'in. On the asymptotics of the solution of a~problem with a~small parameter. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 261-279. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a2/