A~constructive characterization of harmonic functions in domains with quasiconformal boundaries
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 441-454
Voir la notice de l'article provenant de la source Math-Net.Ru
For the case of a bounded Jordan domain $G\subset\mathbf C$ with quasiconformal boundary, the author solves the problem, posed by V. K. Dzyadyk in the mid-sixties, of a constructive description of the classes of functions that are harmonic in $G$ and continuous on $\overline G$, with given majorant of their modulus of continuity.
Some assertions reflecting the close connection between the geometric structure of $G$ and contour-solid properties of harmonic functions in $G$ are proved.
Bibliography: 23 titles.
@article{IM2_1990_34_2_a11,
author = {V. V. Andrievskii},
title = {A~constructive characterization of harmonic functions in domains with quasiconformal boundaries},
journal = {Izvestiya. Mathematics },
pages = {441--454},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a11/}
}
TY - JOUR AU - V. V. Andrievskii TI - A~constructive characterization of harmonic functions in domains with quasiconformal boundaries JO - Izvestiya. Mathematics PY - 1990 SP - 441 EP - 454 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a11/ LA - en ID - IM2_1990_34_2_a11 ER -
V. V. Andrievskii. A~constructive characterization of harmonic functions in domains with quasiconformal boundaries. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 441-454. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a11/