A~constructive characterization of harmonic functions in domains with quasiconformal boundaries
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 441-454.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the case of a bounded Jordan domain $G\subset\mathbf C$ with quasiconformal boundary, the author solves the problem, posed by V. K. Dzyadyk in the mid-sixties, of a constructive description of the classes of functions that are harmonic in $G$ and continuous on $\overline G$, with given majorant of their modulus of continuity. Some assertions reflecting the close connection between the geometric structure of $G$ and contour-solid properties of harmonic functions in $G$ are proved. Bibliography: 23 titles.
@article{IM2_1990_34_2_a11,
     author = {V. V. Andrievskii},
     title = {A~constructive characterization of harmonic functions in domains with quasiconformal boundaries},
     journal = {Izvestiya. Mathematics },
     pages = {441--454},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a11/}
}
TY  - JOUR
AU  - V. V. Andrievskii
TI  - A~constructive characterization of harmonic functions in domains with quasiconformal boundaries
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 441
EP  - 454
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a11/
LA  - en
ID  - IM2_1990_34_2_a11
ER  - 
%0 Journal Article
%A V. V. Andrievskii
%T A~constructive characterization of harmonic functions in domains with quasiconformal boundaries
%J Izvestiya. Mathematics 
%D 1990
%P 441-454
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a11/
%G en
%F IM2_1990_34_2_a11
V. V. Andrievskii. A~constructive characterization of harmonic functions in domains with quasiconformal boundaries. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 441-454. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a11/

[1] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[2] Walsh J. L., Sewell W. E., Elliot H. M., “On the degree of polynomial approximation to harmonic and analytic functions”, Trans. Amer. Math. Soc., 67:2 (1949), 381–420 | DOI | MR | Zbl

[3] Dzyadyk V. K., “Ob analiticheskikh i garmonicheskikh preobrazovaniyakh funktsii i o priblizhenii garmonicheskikh funktsii”, Ukr. matem. zhurn., 19:5 (1967), 33–57 | MR

[4] Borodin V. L., “Lokalnye moduli nepreryvnosti i svoistva garmonicheskikh funktsii v oblastyakh s uglami”, Teoriya priblizheniya funktsii i ee prilozheniya, Nauk. dumka, Kiev, 1974, 4–14

[5] Dveirin M. Z., “Teorema Khardi–Littlvuda i priblizhenie garmonicheskikh funktsii v oblastyakh s kvazikonformnoi granitsei”, Dokl. AN USSR. Ser. A., 1982, no. 1, 11–14 | MR | Zbl

[6] Andrievskii V. V., “O priblizhenii funktsii garmonicheskimi polinomami”, Izv. AN SSSR. Ser. matem., 51:1 (1987), 3–15 | MR | Zbl

[7] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR

[8] Lehto O., Virtanen K. L., Quasiconformal Mappings in the Plane, Springer-Verlag, Berlin, Heidelberg, New York, 1972 | MR

[9] Belyi V. I., “Konformnye otobrazheniya i priblizhenie funktsii v oblastyakh s kvazikonformnoi granitsei”, Matem. sb., 102(144):3 (1977), 331–361 | MR | Zbl

[10] Andrievskii V. V., “Konstruktivnaya kharakteristika garmonicheskikh funktsii v oblastyakh s kvazikonformnoi granitsei”, Kvazikonformnoe prodolzhenie i priblizhenie funktsii na mnozhestvakh kompleksnoi ploskosti, Kiev, 1985, 3–14, Preprint In-ta matematiki AN USSR | MR

[11] Tamrazov P. M., Gladkosti i polinomialnye priblizheniya, Nauk. dumka, Kiev, 1975 | MR | Zbl

[12] Tamrazov P. M., Lokalnaya konturno-telesnaya zadacha dlya subgarmonicheskikh funktsii, Preprint 84. 52, In-t matematiki AN USSR, Kiev, 1984 | Zbl

[13] Shabalin P. L., “O prodolzhimosti s granitsy vnutr oblasti usloviya Gëldera dlya garmonicheskikh funktsii”, Izv. VUZov, matematika, 1986, no. 10(293), 82–84 | MR | Zbl

[14] Mazya V. G., “O regulyarnosti na granitse reshenii ellipticheskikh uravnenii i konformnogo otobrazheniya”, Dokl. AN SSSR, 152:6 (1963), 1297–1300

[15] Mazya V. G., “O povedenii vblizi granitsy resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v divergentnoi forme”, Matem. zametki, 2:2 (1967), 209–220

[16] Mazya V. G., “O module nepreryvnosti garmonicheskoi funktsii v granichnoi tochke”, Zap. nauchn. semin. LOMI, 135, 1984, 87–95 | MR

[17] Andrievskii V. V., “Nekotorye svoistva kontinuumov s kusochno kvazikonformnoi granitsei”, Ukr. matem. zhurn., 32:4 (1980), 435–440 | MR | Zbl

[18] Andrievskii V. V., “Opisanie klassov funktsii s zadannoi skorostyu ubyvaniya ikh nailuchshikh ravnomernykh polinomialnykh priblizhenii”, Ukr. matem. zhurn., 36:5 (1984), 602–606 | MR | Zbl

[19] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[20] Andrievskii V. V., “O ravnomernoi skhodimosti polinomov Biberbakha v oblastyakh s kusochno-kvazikonformnoi granitsei”, Teoriya otobrazhenii i priblizhenie funktsii, Nauk. dumka, Kiev, 1983, 3–18 | MR

[21] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[22] Mergelyan S. N., “Garmonicheskaya approksimatsiya i priblizhennoe reshenie zadachi Koshi dlya uravneniya Laplasa”, UMN, 11:5(71) (1956), 3–26 | MR

[23] Belyi V. I., Miklyukov V. M., “Nekotorye svoistva konformnykh i kvazikonformnykh otobrazhenii i pryamye teoremy konstruktivnoi teorii funktsii”, Izv. AN SSSR. Ser. matem., 38:6 (1974), 1343–1361 | MR | Zbl