Overturning solitons in new two-dimensional integrable equations
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 245-259

Voir la notice de l'article provenant de la source Math-Net.Ru

Two two-dimensional nonlinear equations are constructed which are integrable by means of a one-dimensional inverse scattering problem. Soliton and $N$-soliton solutions are indicated which are smooth in one coordinate and in the other possess the same overturning property as the classical Riemann wave. Bibliography: 9 titles.
@article{IM2_1990_34_2_a1,
     author = {O. I. Bogoyavlenskii},
     title = {Overturning solitons in new two-dimensional integrable equations},
     journal = {Izvestiya. Mathematics },
     pages = {245--259},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a1/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - Overturning solitons in new two-dimensional integrable equations
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 245
EP  - 259
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a1/
LA  - en
ID  - IM2_1990_34_2_a1
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T Overturning solitons in new two-dimensional integrable equations
%J Izvestiya. Mathematics 
%D 1990
%P 245-259
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a1/
%G en
%F IM2_1990_34_2_a1
O. I. Bogoyavlenskii. Overturning solitons in new two-dimensional integrable equations. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 245-259. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a1/