Diameters of state spaces of Jordan Banach algebras
Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 229-244
Voir la notice de l'article provenant de la source Math-Net.Ru
The notion of diameter $D(A)$ of the state space of a Jordan Banach algebra ($JBW$-algebra $A$) is introduced. The diameters of the state spaces for $JBW$-factors of type $\mathrm I_n$ ($n+\infty$), $\mathrm I_\infty$,
$\mathrm{II}_1$, $\mathrm{II}_\infty$, $\mathrm{III}_\lambda$ ($0\lambda1$) are computed.
It is proved that if $A$ is not a factor, or is a factor of type $\mathrm I_\infty$ or $\mathrm{II}_1$, then $D(A)=2$. If $A$ is a $JBW$-factor of type
$\mathrm I_n$ ($n+\infty$), then $D(A)=2(1-1/n)$, and if $A$ is a $JBW$-factor of type $\mathrm{III}_\lambda$ ($0\lambda1$), then
$D(A)=2(1-\sqrt\lambda)/(1+\sqrt\lambda)$ or
$D(A)=2(1-\sqrt[4]\lambda)/(1+\sqrt[4]\lambda)$.
Bibliography: 15 titles.
@article{IM2_1990_34_2_a0,
author = {Sh. A. Ayupov and Sh. M. Usmanov},
title = {Diameters of state spaces of {Jordan} {Banach} algebras},
journal = {Izvestiya. Mathematics },
pages = {229--244},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a0/}
}
Sh. A. Ayupov; Sh. M. Usmanov. Diameters of state spaces of Jordan Banach algebras. Izvestiya. Mathematics , Tome 34 (1990) no. 2, pp. 229-244. http://geodesic.mathdoc.fr/item/IM2_1990_34_2_a0/