Subgroups and homology of free products of profinite groups
Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 97-119

Voir la notice de l'article provenant de la source Math-Net.Ru

The author defines a new construction of free product $G=\mathop{\text{\LARGE{$*$}}}^{\mathfrak K}_TG_t$ in the variety $\mathfrak K$ of profinite groups of the family $\{G_t\mid t\in T\}$ of groups in $\mathfrak K$, continuously indexed by points of the profinite space $T$. In the case where $\mathfrak K$ is closed relative to extensions with Abelian kernels, a number of assertions about the homology groups of $G$ are obtained. Using homological methods, a theorem of Kurosh type on decomposition of an arbitrary pro-$p$-subgroup in $G$ into a free pro-$p$-product is proved, under a certain separability condition on $G$. Bibliography: 19 titles.
@article{IM2_1990_34_1_a4,
     author = {O. V. Mel'nikov},
     title = {Subgroups and homology of free products of profinite groups},
     journal = {Izvestiya. Mathematics },
     pages = {97--119},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a4/}
}
TY  - JOUR
AU  - O. V. Mel'nikov
TI  - Subgroups and homology of free products of profinite groups
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 97
EP  - 119
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a4/
LA  - en
ID  - IM2_1990_34_1_a4
ER  - 
%0 Journal Article
%A O. V. Mel'nikov
%T Subgroups and homology of free products of profinite groups
%J Izvestiya. Mathematics 
%D 1990
%P 97-119
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a4/
%G en
%F IM2_1990_34_1_a4
O. V. Mel'nikov. Subgroups and homology of free products of profinite groups. Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 97-119. http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a4/