Subgroups and homology of free products of profinite groups
Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 97-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author defines a new construction of free product $G=\mathop{\text{\LARGE{$*$}}}^{\mathfrak K}_TG_t$ in the variety $\mathfrak K$ of profinite groups of the family $\{G_t\mid t\in T\}$ of groups in $\mathfrak K$, continuously indexed by points of the profinite space $T$. In the case where $\mathfrak K$ is closed relative to extensions with Abelian kernels, a number of assertions about the homology groups of $G$ are obtained. Using homological methods, a theorem of Kurosh type on decomposition of an arbitrary pro-$p$-subgroup in $G$ into a free pro-$p$-product is proved, under a certain separability condition on $G$. Bibliography: 19 titles.
@article{IM2_1990_34_1_a4,
     author = {O. V. Mel'nikov},
     title = {Subgroups and homology of free products of profinite groups},
     journal = {Izvestiya. Mathematics },
     pages = {97--119},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a4/}
}
TY  - JOUR
AU  - O. V. Mel'nikov
TI  - Subgroups and homology of free products of profinite groups
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 97
EP  - 119
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a4/
LA  - en
ID  - IM2_1990_34_1_a4
ER  - 
%0 Journal Article
%A O. V. Mel'nikov
%T Subgroups and homology of free products of profinite groups
%J Izvestiya. Mathematics 
%D 1990
%P 97-119
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a4/
%G en
%F IM2_1990_34_1_a4
O. V. Mel'nikov. Subgroups and homology of free products of profinite groups. Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 97-119. http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a4/

[1] Binz E., Neukirch J., Wenzel G. H., “A subgroup theorem for free products of pro-finite groups”, J. Algebra, 19:1 (1971), 104–109 | DOI | MR | Zbl

[2] Gildenhuys D., Ribes L., “A Kurosh subgroup theorem for free pro-$C$-products of pro-$C$-groups”, Trans. Amer. Math. Soc., 186 (1973), 309–329 | DOI | MR

[3] Herfort W., Ribes L., “The structure of free products of pro-$p$-groups”, Math. Repts. Acad. Sci. Canada, 8:5 (1986), 285–289 | MR | Zbl

[4] Neukirch J., “Produkte pro-endlicher Gruppen und ihre Kohomologie”, Atch. Math., 22:4 (1971), 337–357 | DOI | MR | Zbl

[5] Gildenhuys D., Ribes L., “Profinite groups and boolean graphs”, J. Pure Appl. Algebra, 12:1 (1978), 21–47 | DOI | MR | Zbl

[6] Huebschmann J., “Cohomology theory of aspherical groups and of small cancelation groups”, J. Pure Appl. Algebra, 14:2 (1979), 137–143 | DOI | MR | Zbl

[7] Neukirch J., “Einbettungsprobleme mit lokaler Vorgabe und freie Produkte lokaler Galoisgruppen”, J. Reine Angew. Math., 259 (1973), 1–47 | MR | Zbl

[8] Neumann O., “On $p$-closed number fields and an analogue of Riemann's existence theorem”, Algebraic Number Fields, ed. A. Fröhlich, Acad. Press, L., N.Y., S. Francisco, 1977, 625–647 | MR

[9] Wingberg K., “Freie Produktzerlegungen von Galoisgruppen und Iwasawa – invarianten für $p$-Erweiterungen von $Q$”, J. Reine Angew. Math., 341 (1983), 111–129 | MR | Zbl

[10] Stinrod N., Eilenberg S., Osnovaniya algebraicheskoi topologii, Fizmatgiz, M., 1958

[11] Brumer A., “Pseudo-compact algebras, profinite groups and class formations”, J. Algebra, 4:3 (1966), 442–470 | DOI | MR | Zbl

[12] Gildenhuys D., Lim C.-K., “Free pro-$C$-groups”, Math. Z., 125:3 (1972), 233–254 | DOI | MR | Zbl

[13] Burbaki H., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968 | MR

[14] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL., M., 1960

[15] Serr Zh.-P., Kogomologii Galua, Mir, M., 1968 | MR

[16] Zalesskii Ya. A., Melnikov O. V., Podgruppy prokonechnykh grupp, deistvuyuschikh na derevyakh, Preprint No 32(268), In-t matem. AN BSSR, Minsk, 1986 | Zbl

[17] Chiswell I. M., “Exact sequences associated with a graph of groups”, J. Pure Appl. Algebra, 8:1 (1976), 63–74 | DOI | MR | Zbl

[18] Gildenhuys D., Ribes L., “On the cohomologv of certain topological colimits of pro-$C$-groups”, J. Algebra, 29:1 (1974), 172–197 | DOI | MR | Zbl

[19] Herfort W., Ribes L., “Torsion elements and centralizers in free products of profinite groups”, J. Reine Angew. Math., 358 (1985), 155–161 | MR | Zbl