Representation of associative algebras and coherent sheaves
Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 23-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a triangulated category generated by a strong exceptional collection is equivalent to the derived category of modules over an algebra of homomorphisms of this collection. For the category of coherent sheaves on a Fano variety, the functor of tightening to a canonical class is described by means of mutations of an exceptional collection generating the category. The connection between mutability of strong exceptional collections and the Koszul property is studied. It is proved that in the geometric situation mutations of exceptional sheaves consist of present sheaves and the corresponding algebra of homomorphisms is Koszul and selfconsistent. Bibliography: 18 titles.
@article{IM2_1990_34_1_a1,
     author = {A. I. Bondal},
     title = {Representation of associative algebras and coherent sheaves},
     journal = {Izvestiya. Mathematics },
     pages = {23--42},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a1/}
}
TY  - JOUR
AU  - A. I. Bondal
TI  - Representation of associative algebras and coherent sheaves
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 23
EP  - 42
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a1/
LA  - en
ID  - IM2_1990_34_1_a1
ER  - 
%0 Journal Article
%A A. I. Bondal
%T Representation of associative algebras and coherent sheaves
%J Izvestiya. Mathematics 
%D 1990
%P 23-42
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a1/
%G en
%F IM2_1990_34_1_a1
A. I. Bondal. Representation of associative algebras and coherent sheaves. Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 23-42. http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a1/

[1] Beilinson A. A., “Kogerentnye puchki na $\mathbf{P}^n$ i problemy lineinoi algebry”, Funkts. analiz i ego prilozh., 12:3 (1978), 68–69 | MR | Zbl

[2] Beilinson A. A., Bernstein J., Localisation de $g$-modules, 292:1 (1981), 15–18 | MR | Zbl

[3] Beilinson A. A., Bernstein J. N., Delingne P., Faisceaux pervers, Asterisque, no. 100, 1981 | Zbl

[4] Bernshtein I. N., Gelfand I. M., Ponomarev V. A., “Funktory Kokstera i teorema Gabrielya”, Uspekhi matem. nauk, 28:2 (1973), 19–33 | MR

[5] Brenner S., Butler M. C. R., Generalizations of the Bernstein–Gelfand–Ponomaryov reflection finctors, Lect. Notes in Math., no. 832, 1980

[6] Verdier J.-L., “Catégories dérivées”, Lect. Notes in Math., no. 569, 1977, 262–311 | Zbl

[7] Gorodentsev A. L., “Perestroiki isklyuchitelnykh rassloenii na $\mathbf{P}^n$”, Izv. AN SSSR. Ser. matem., 52:1 (1988), 3–15 | MR

[8] Gorodentsev A. L., Rudakov A. N., “Exceptional vector bundles on projective spaces”, Duke. Math. J., 54:1 (1987), 115–130 | DOI | MR | Zbl

[9] Dreset J.-M., “Fibrés stables et fibres exceptionnels sur $\mathbf{P}^2$”, Ann. Ec. N. Sup., 18 (1985), 193–244 | MR

[10] Kapranov M. M., “Proizvodnaya kategoriya kogerentnykh puchkov na mnogoobraziyakh Grassmana”, Izv. AN SSSR. Ser. matem., 48:1 (1984), 192–202 | MR

[11] Kapranov M. M., “Proizvodnaya kategoriya kogerentnykh puchkov na kvadrike”, Funkts. analiz i ego prilozh., 20:2 (1986), 67 | MR | Zbl

[12] Kapranov M. M., “On the derived categories of coherent sheaves on some homogeneous spaces”, Invent. Math., 1988, no. 2, 479–508 | DOI | MR | Zbl

[13] MacPherson R., Vilonen K., “Elementary construction of perverse sheaves”, Invent. Math., 1986, no. 84, 403–425 | DOI | MR

[14] Okonek K., Shneider M., Shpindler X., Vektornye rassloeniya na kompleksnykh proektivnykh prostranstvakh, Mir, M., 1984 | MR | Zbl

[15] Priddy S., “Koszul complexes”, Transactions of AMS, 1970, no. 152, 39–60 | DOI | MR | Zbl

[16] Serr Zh.-P., “Kogerentnye algebraicheskie puchki”, Rassloennye prostranstva i ikh prilozheniya, IL, M., 1958, 372–458

[17] Swan R. G., “$K$-theory of quadric hypersurfaces”, Ann. Math., 121:1 (1985), 113–153 | DOI | MR

[18] Rudakov A. N., “Isklyuchitelnye rassloeniya na kvadrike”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 788–812 | Zbl