Boundary value problems with strong nonlocalness for elliptic equations
Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 1-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlocal boundary value problems are considered for elliptic equations of the following form. A nonperiodic mapping $g$ of the boundary to itself is given, and the boundary condition connects the values of the unknown function and its derivatives at the points $x,g(x),g(g(x)),\dots$. The author obtains necessary and sufficient conditions for the problem to be Noetherian (i.e. for the operator to be Fredholm) in terms of the invertibility of an auxiliary functional operator (the symbol of the problem), acting in a function space on the bundle of unit cotangent vectors to the boundary. Explicit necessary and sufficient conditions for the Noether property are presented for a number of examples. The main constructions and proofs are based on the theory of $C^*$-algebras generated by dynamical systems. Bibliography: 37 titles.
@article{IM2_1990_34_1_a0,
     author = {A. B. Antonevich},
     title = {Boundary value problems with strong nonlocalness for elliptic equations},
     journal = {Izvestiya. Mathematics },
     pages = {1--21},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a0/}
}
TY  - JOUR
AU  - A. B. Antonevich
TI  - Boundary value problems with strong nonlocalness for elliptic equations
JO  - Izvestiya. Mathematics 
PY  - 1990
SP  - 1
EP  - 21
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a0/
LA  - en
ID  - IM2_1990_34_1_a0
ER  - 
%0 Journal Article
%A A. B. Antonevich
%T Boundary value problems with strong nonlocalness for elliptic equations
%J Izvestiya. Mathematics 
%D 1990
%P 1-21
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a0/
%G en
%F IM2_1990_34_1_a0
A. B. Antonevich. Boundary value problems with strong nonlocalness for elliptic equations. Izvestiya. Mathematics , Tome 34 (1990) no. 1, pp. 1-21. http://geodesic.mathdoc.fr/item/IM2_1990_34_1_a0/

[1] Peetre J., “Une caractérisation abstraite dès opérateurs différentiels”, Math. Scand., 7 (1959), 211–218 ; 8 (1960), 116–120 | MR | Zbl | MR | Zbl

[2] Browder F., “Non-local elliptic boundary value problems”, Amer. J. Math., 86:4 (1964), 735–758 | DOI | MR

[3] Beats R., “Non-local boundary value problems for elliptic operators”, Amer. J. Math., 87:2 (1965), 315–362 | DOI | MR

[4] Schechter M., “Non-local elliptic boundary value problems”, Ann. Scuola Norm. Super. Pisa. Sci. Fis. e Math., 20:2 (1966), 421–441 | MR | Zbl

[5] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, Dokl. AN SSSR, 185:4 (1969), 739–740 | Zbl

[6] Steklov V. A., Osnovnye zadachi matematicheskoi fiziki, 2-e izd., Nauka, M., 1983 | MR | Zbl

[7] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR

[8] Ionkin N. I., “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskimi kraevymi usloviyami”, Diff. uravn., 13:2 (1977), 294–304 | MR | Zbl

[9] Dezin A. A., “Prosteishie razreshimye rasshireniya dlya ultragiperbolicheskogo i psevdoparabolicheskogo operatorov”, Dokl. AN SSSR, 148:5 (1963), 1013–1016 | MR | Zbl

[10] Dezin A. A., “Operatory s pervoi proizvodnoi po “vremeni” i nelokalnye granichnye usloviya”, Izv. AN SSSR. Ser. matem., 31:1 (1967), 61–86 | MR | Zbl

[11] Carleman T., “Sur la théorie des équations intégrates et ses applications”, Verhandl. des Internat. Mathem. Kongr., Zurich, 1932, 138–151 | Zbl

[12] Litvinchuk G. S., Kraevye zadachi i singulyarnye integralnye uravneniya so sdvigom, Nauka, M., 1977 | MR | Zbl

[13] Kordzadze R. A., “Obschaya kraevaya zadacha so sdvigom dlya uravneniya ellipticheskogo tipa vtorogo poryadka”, Dokl. AN SSSR, 155:4 (1964), 739–742 | MR | Zbl

[14] Krein S. G., Laptev G. I., “Granichnye zadachi dlya differentsialnykh uravnenii vtorogo poryadka v banakhovom prostranstve”, Diff. uravn., 2:3 (1966), 382–390 | MR | Zbl

[15] Antonevich A. B., “O normalnoi razreshimosti obschei kraevoi zadachi so sdvigom dlya uravnenii ellipticheskogo tipa”, Tr. II resp. konf. matem. BSSR, BGU, Minsk, 1969, 253–255

[16] Roitberg Ya. A., Sheftel Z. G., “Ob odnom klasse obschikh nelokalnykh ellipticheskikh zadach”, Dokl. AN SSSR, 192:3 (1970), 511–513 | MR | Zbl

[17] Chesalin V. I., Yurchuk N. I., “Zadacha s nelokalnymi usloviyami dlya abstraktnykh uravnenii Lyava”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 1973, no. 6, 30–35 | Zbl

[18] Dubrovskaya A. P., “Funktsiya Grina nelokalnoi odnorodnoi parabolicheskoi granichnoi zadachi”, Sib. matem. zhurn., 17:5 (1976), 1032–1045 | MR | Zbl

[19] Nakhushev A. M., “O nelokalnykh kraevykh zadachakh so smescheniem i ikh svyazi s nagruzhennymi uravneniyami”, Diff. uravn., 21:1 (1985), 92–101 | MR | Zbl

[20] Skubachevskii A. L., “Ellipticheskie zadachi s nelokalnymi usloviyami vblizi granitsy”, Matem. sb., 129(171) (1986), 279–302 | MR

[21] Lopatinskii Ya. B., Teoriya obschikh granichnykh zadach. Izbrannye trudy, Nauk. dumka, Kiev, 1984 | MR

[22] Trev F., Vvedenie v teoriyu psevdodifferentsialnykh operatorov i integralnykh operatorov Fure, t. 1, 2, Mir, M., 1984 | Zbl

[23] Sili R., “Integro-differentsialnye operatory na vektornykh rassloeniyakh”, Matematika, 11:2 (1967), 57–97

[24] Myshkis A. D., “O nekotorykh problemakh teorii uravnenii s otklonyayuschimsya argumentom”, UMN, 31:2 (1977), 173–202 | MR

[25] Rabinovich V. S., “O razreshimosti differentsialno-raznostnykh uravnenii na $\mathbf{R}^n$ i v poluprostranstve”, Dokl. AN SSSR, 243:5 (1978), 1134–1137 | MR | Zbl

[26] Rabinovich V. S., “Ob algebre, porozhdennoi psevdodifferentsialnymi operatorami na $\mathbf{R}^n$, operatorami umnozheniya na pochti periodicheskie funktsii i operatorami sdviga”, Dokl. AN SSSR, 163:8 (1982), 1066–1069 | MR

[27] Antonevich A. B., “Psevdodifferentsialnye operatory so sdvigom, porozhdennym deistviem kompaktnoi gruppy Li”, Sib. matem. zhurn., 20:3 (1979), 467–478 | MR | Zbl

[28] Antonevich A. B., Lebedev A. V., “Rasshirenie operatornykh algebr s pomoschyu unitarnykh operatorov, porozhdayuschikh avtomorfizmy”, Dokl. AN BSSR, 24:5 (1980), 404–407 | MR

[29] Antonevich A. B., Brenner V. V., “O simvole psevdodifferentsialnogo operatora s lokalno nezavisimymi sdvigami”, Dokl. AN BSSR, 24:10 (1980), 884–887 | MR | Zbl

[30] Antonevich A. B., “Algebra, porozhdennaya operatorami vzveshennogo sdviga i psevdodifferentsialnye operatory so sdvigom”, Dokl. AN SSSR, 256:6 (1981), 1293–1296 | MR | Zbl

[31] Grinlif F., Invariantnye srednie na topologicheskikh gruppakh, Mir, M., 1973

[32] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | Zbl

[33] Pedersen G., $C$-algebras and their Automorphism groups, Academic-Press, London, New York, San-Francisco, 1979 | MR | Zbl

[34] Antonevich A. B., “O dvukh metodakh issledovaniya obratimosti operatorov iz $C^*$-algebr, porozhdennykh dinamicheskimi sistemami”, Matem. sb., 124:1 (1984), 3–23 | MR | Zbl

[35] Lebedev A. V., “Ob obratimosti elementov v $C^*$-algebrakh, porozhdennykh dinamicheskimi sistemami”, UMN, 34:4 (1979), 199–200 | MR | Zbl

[36] Kitover A. K., “O spektre avtomorfizmov s vesom i teoreme Kamovitsa–Shainberga”, Funkts. analiz i ego prilozh., 13:1 (1979), 70–71 | MR | Zbl

[37] Antonevich A. B., Lebedev A. V., “O spektralnykh svoistvakh operatorov so sdvigom”, Izv. AN SSSR. Ser. matem., 47:5 (1983), 915–941 | MR | Zbl